Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T16:57:53.036Z Has data issue: false hasContentIssue false

Defect/surface interactions in heat-treated ceramic thin films

Published online by Cambridge University Press:  31 January 2011

David W. Susnitzky
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
C. Barry Carter*
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
*
b)Address correspondence to this author, Dept. Chem. E. & Mat. S., University of Minnesota, Minneapolis, Minnesota 55455–0132.
Get access

Abstract

The use of transmission electron microscopy to study the interaction of lattice defects with surfaces of heat-treated ceramic materials is discussed. The approach used throughout the work described has been to prepare a thinned sample in a form suitable for imaging in the electron microscope and then to remove all preparation-induced damage by heat-treating the thinned sample. Applications of the technique to the movement and pinning of individual surface steps in alumina and the grooving of antiphase boundaries in silicon carbide are illustrated.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Henrich, V. E., Rep. Prog. Phys. 48, 14811541 (1985).CrossRefGoogle Scholar
2.Chang, C. C., J. Appl. Phys. 39 (12), 55705573 (1968).CrossRefGoogle Scholar
3.Stoneham, A. M., J. Am. Ceram. Soc. 64 (1), 5460 (1981).CrossRefGoogle Scholar
4.Tasker, P. W. and Duffy, D. M., Surf. Sci. 137, 91102 (1984).CrossRefGoogle Scholar
5.Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132 (3), 642648 (1985).CrossRefGoogle Scholar
6.Smith, D. J., Bursill, L. A., and Jefferson, D. A., Surf. Sci. 175, 673683 (1986).CrossRefGoogle Scholar
7.Susnitzky, D. W., Kouh, Y., De, Simpson B. C., and Carter, Cooman C. B., in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Chen, Y., Kingery, W. D., and Stokes, R. J. (Mater. Res. Soc. Symp. Proc. 60, Pittsburgh, PA, 1986), pp. 219226.Google Scholar
8.Hockey, B. J., Proc. Brit. Ceram. Soc. 20, 95115 (1972).Google Scholar
9.Mitchell, T. E., Pletka, B. J., Phillips, D. S., and Heuer, A. H., Philos. Mag. 34 (3), 441451 (1976).CrossRefGoogle Scholar
10.Kong, H. S., Wang, Y. C., Glass, J. T., and Davis, R. F., J. Mater. Res. 3, 521530 (1988).CrossRefGoogle Scholar
11.Carter, C. H., Jr., Davis, R. F., and Nutt, S. R., J. Mater. Res. 1, 811819 (1986).CrossRefGoogle Scholar
12.More, K. L., Bentley, J., and Davis, R. F., Proc. Ann. Meet. EMSA 45, 282283 (1987).Google Scholar
13.Taftø, J. and Spence, J. C. H., J. Appl. Cryst. 5, 6064 (1982).CrossRefGoogle Scholar
14.Better Ceramics Through Chemistry, edited by Brinker, C. J., Clarke, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 32, Pittsburgh, PA, 1984).Google Scholar
15.Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clarke, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986).Google Scholar
16.Barringer, E. A., Brook, R., and Bowen, H. K., Mater. Sci. Res. 16, 121 (1984).Google Scholar
17.Dynys, J. M., “Sintering Mechanisms and Surface Diffusion for Aluminum Oxide,” Ph.D. Thesis, Massachusetts Institute of Technology, 1982.Google Scholar
18.Tasker, P. W., Adv. Ceram. 10, 176188 (1984).Google Scholar
19.Watanabe, K. and Sunagawa, I., J. Cryst. Growth 57, 367378 (1982).CrossRefGoogle Scholar
20.Dragsdorf, R. D. and Webb, W. W., J. Appl. Phys. 29 (5), 817819 (1958).CrossRefGoogle Scholar
21.Frank, F. C., Acta Cryst. 4, 497501 (1951).CrossRefGoogle Scholar
22.Cho, N-H., De Cooman, B. C., Wagner, D. K., and Carter, C. B., Appl. Phys. Lett. 47 (8), 879881 (1985).CrossRefGoogle Scholar
23.Carter, C. B. and Kouh, Y.Simpson, Ber. Bunsenges. Phys. Chem. 90, 676680 (1986).CrossRefGoogle Scholar