Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T17:53:42.101Z Has data issue: false hasContentIssue false

CsCl-modified Ga2S3–La2S3 glasses: Structural approach by x-ray absorption spectroscopy

Published online by Cambridge University Press:  31 January 2011

A. Y. Ramos*
Affiliation:
Laboratório Nacional de Luz Síncroton, CP 6192, 13083-970 Campinas Brazil, and Laboratoire de Minéralogie-Cristallographie, CNRS-UMR7590, University of Paris VI, Paris, France
M. Grisolía Cardona
Affiliation:
Laboratório Nacional de Luz Síncroton, CP 6192, 13083-970 Campinas Brazil, and Departmento de Química, Universidad de los Andes, Mérida, Venezuela
H. C. N. Tolentino
Affiliation:
Laboratório Nacional de Luz Síncroton, CP 6192, 13083-970 Campinas, Brazil
M. C. M. Alves
Affiliation:
Laboratório Nacional de Luz Síncroton, CP 6192, 13083-970 Campinas, Brazil
N. Watanabe
Affiliation:
Laboratório Nacional de Luz Síncroton, CP 6192, 13083-970 Campinas Brazil, and Laboratoire Química do Estado Sólido, UNICAMP, Box 6154, 13083-970, Campinas, Brazil
O. L. Alves
Affiliation:
Laboratoire Química do Estado Sólido, UNICAMP, Box 6154, 13083-970 Campinas, Brazil
L. C. Barbosa
Affiliation:
Laboratório de Materiais Vítreos, UNICAMP, Box 6165, 13083-970, Campinas, Brazil
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

Gallium–lanthanum sulfide glasses are potential hosts for 1.3-μm optical fiber amplifiers and for fiber lasers in the near and middle infrared. In these glasses the addition of CsCl increases the thermal stability region making possible to draw optical fibers, without altering the optical properties of the glass. Ga2S3–La2S3 glasses modified by 10 to 40% CsCl have been studied by x-ray absorption spectroscopy, to investigate the structural role of CsCl. The chlorine environment is found similar to that in CsCl. The gallium-based network is composed from almost regular tetrahedra weakly connected by corners and is not altered by the addition of CsCl.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Youden, K.E., Grevatt, T., Eason, R.W., Rutt, H.N., Deol, R.S., and Wylangowsky, G., Appl. Phys. Lett. 63, 1601 (1993).Google Scholar
2.Hewak, D.W., Deol, R.S., Wang, J., Wylangowski, G., Medeiros Neto, J.A., Samson, B.N., Laming, R.I., Broklesby, W.S., and Payne, D.N., Electron. Lett. 29, 237 (1993).CrossRefGoogle Scholar
3.Dearaojo, M.T., Neto, J.A.M., Sombra, A.S.B., Oliveira, A.S., and Gouveineto, A.S., Opt. Mater. 7, 1 (1997).Google Scholar
4.Tverjanovich, A., Tveryanovich, Y.S., and Loheider, S., J. Non-Cryst. Solids 208, 49 (1996).CrossRefGoogle Scholar
5.Tver'yanovich, Y.S., Nedoshovenko, E.G., Aleksandrov, V.V., Turkina, E.Yu., Tver'yanovich, A.S., and Sokolov, I.A., Glass Phys. Chem. 22, 9 (1996).Google Scholar
6.Marmolejo, E.M., Granado, E., Alves, O.L., Cesar, C.L., and Barbosa, L.C., J. Non-Cryst. Solids 247, 189 (1999).CrossRefGoogle Scholar
7.Smorlorz, S., Lui, X., Quian, L., Wise, F., Wang, J., Brady, D., Hewak, D., and Payne, D.N., Electron. Lett. 34, 2268 (1998).CrossRefGoogle Scholar
8.Hector, J.R., Wang, J., Brady, D., Kluth, M., Hewak, D.W., Brocklesby, W.S., and Payne, D.N., J. Non-Cryst. Solids 239, 176 (1998).CrossRefGoogle Scholar
9.Benazeth, S., Tuilier, M.H., Loireau-Lozach, A.M., Dexpert, H., Lagarde, P., and Flahaut, J., J. Non-Cryst. Solids 110, 89 (1989).CrossRefGoogle Scholar
10.Asal, R., Rivers, P.E., and Rutt, H.N., J. Phys. C 9, 6217 (1997).Google Scholar
11.Lee, P.A., Citrin, P.H., Eisenberger, P., and Kincaid, B.M., Rev. Mod. Phys. 53, 769 (1989).CrossRefGoogle Scholar
12.Sayers, D.E. and Bunker, B.A., in X-ray Absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES, edited by Koningsberger, D.C. and Prins, R. (Wiley-Intersciences, New York, 1988), pp. 211253.Google Scholar
13.Teo, B.K., in EXAFS: Basic Principles and Data Analysis, edited by Springer-Verlag (Berlin, Heidelberg, New York, Tokyo, 1986), p. 132.CrossRefGoogle Scholar
14.Tolentino, H., Cezar, J.C., Cruz, D.Z., Compagnon-Cailhol, V., Tamura, E., and Alves, M.C.M., J. Synchrotron Radiat. 5, 521 (1998).Google Scholar
15.Rodrigues, A.R.D., Craievich, A.F., and Gonçalve da Silva, C.E.T., J. Synchrotron Radiat. 5, 1157 (1998).CrossRefGoogle Scholar
16.Tolentino, H., Ramos, A.Y., Alves, M.C.M., Barrea, R., Tamura, E., Cezar, J.C., and Watanabe, N., J. Synchrotron Radiat. (2001, in press).Google Scholar
17.Krause, M.O. and Oliver, J.H., J. Phys. Chem. Ref. Data 8, 329 (1979).Google Scholar
18.Ressler, T., J. Phys. IV 7, C2269 (1997).Google Scholar
19.Zabinsky, S.I., Rehr, J.J., Ankudinov, A., Albers, R.C., and Eller, M.J., Phys. Rev. B 52, 2995 (1995).Google Scholar
20.Mazurier, A., Maneglier-Lacordaire, S., Ghemard, G., and Jaulmes, S., Acta Crystallogr. B 35, 1046 (1979).CrossRefGoogle Scholar
21.Julien-Pouzol, M., Jaulmes, S., and Dagron, C., Acta Crystallogr. B 38, 1566 (1982).CrossRefGoogle Scholar
22.Loireau-Losac’h, A.M., Keller-Besrest, F., and Benazeth, S., J. Solid State Chem. 123, 60 (1996).CrossRefGoogle Scholar