Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T01:20:35.465Z Has data issue: false hasContentIssue false

Characterization of the induction period in tricalcium silicate hydration by nuclear resonance reaction analysis

Published online by Cambridge University Press:  26 November 2012

R. A. Livingston
Affiliation:
Office of Infrastructure R&D, Federal Highway Administration, McLean, Virginia 22101
J. S. Schweitzer
Affiliation:
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046
C. Rolfs
Affiliation:
Institut für Physik mit Ionenstrahlen, Ruhr-Universität Bochum, Bochum, Germany
H-W. Becker
Affiliation:
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046
S. Kubsky
Affiliation:
Institut für Physik mit Ionenstrahlen, Ruhr-Universität Bochum, Bochum, Germany
Get access

Abstract

Nuclear resonance reaction analysis has been applied for the first time to measure the development of the hydrogen depth profile in the early stages of hydration of tricalcium silicate using the 1H(15N,αγ)12C reaction. The surface layer had an H concentration and thickness consistent with a few unit cells (1.1 nm) of tobermorite-like material. The inner regions exhibited diffusion-controlled growth with time until the hydrogen concentration approaches that of the surface layer at 4.25 ± 0.07 h. This event marked the end of the induction period and the onset of the rapid hydration reaction period.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Le Chatelier, H.L., Experimental Researches on the Constitution of Hydraulic Mortars (McGraw Publishing Company, New York, 1887).Google Scholar
2.Taylor, H.F.W., Cement Chemistry, 2nd ed. (Thomas Telford, London, United Kingdom, 1997).CrossRefGoogle Scholar
3.Livingston, R.A., Neumann, D., Allen, A.J., and Rush, J.J., in Neutron Scattering in Materials Science II, edited by Wuensch, B., Neumann, D., and Russell, T. (Mater. Res. Soc. Symp. Proc. 376, Pittsburgh, PA, 1996), p. 459.Google Scholar
4.FitzGerald, S., Neumann, D., Rush, J., Bentz, D., and Livingston, R., Chem. Mater. 10 (1), 397 (1998).CrossRefGoogle Scholar
5.Scrivener, K., in Microstructural Development During Hydration of Cement, edited by Struble, L.J. and Brown, P.W. (Mater. Res. Soc. Symp. Proc. 85, Pittsburgh, PA, 1987), p. 39.Google Scholar
6.Meredith, P., Donald, A.M., and Luke, K., J. Mater. Sci. 30, 1921 (1995).CrossRefGoogle Scholar
7.Henderson, E. and Bailey, J.E., J. Mater. Sci. 28, 3681 (1993).CrossRefGoogle Scholar
8.Viehland, D., Li, J-F., Yuan, L-J., and Xu, Z., J. Am. Ceram. Soc. 79, 1731 (1996).CrossRefGoogle Scholar
9.Mitchell, L.D., Prica, M., and Birchall, J.D., J. Mater. Sci. 31, 4207 (1996).CrossRefGoogle Scholar
10.Menetrier, D., Jawed, I., Sun, T.S., and Skalny, J., Cem. Concr. Res. 9, 473 (1979).CrossRefGoogle Scholar
11.Bird, J.R. and Williams, J.S., Ion Beams for Material Analysis (Academic Press, Sydney, Australia, 1989).Google Scholar
12.Amsel, G. and Lanford, W.A., Ann. Rev. Nucl. Part. Sci. 34, 435 (1984).CrossRefGoogle Scholar
13.Lanford, W.A., Nucl. Instr. Methods B66, 65 (1992).CrossRefGoogle Scholar
14.Becker, H.W., Bahr, M., Berheide, M., Borucki, L., Buschmann, M., Rolfs, C., Roters, G., Schmidt, S., Schulte, W.H., Mitchell, G.E., and Schweitzer, J.S., Z. Phys. A351, 453 (1995).CrossRefGoogle Scholar
15.Doremus, R.H., Glass Science, 2nd ed. (John Wiley & Sons, New York, 1994).Google Scholar
16.Schreiner, M., Grasserbauer, M., and March, P., Fresenius Z. Anal. Chem. 331, 428 (1988).CrossRefGoogle Scholar
17.Brunauer, S., Kantro, D.L., and Copeland, L.E., J. Am. Chem. Soc. 80, 761 (1958).CrossRefGoogle Scholar
18.Young, J.F., Tong, H.S., and Berger, R.L., J. Am. Ceram. Soc. 60, 193 (1977).CrossRefGoogle Scholar
19.Trautvetter, H.P., Elix, K., Rolfs, C., and Brand, K., Nucl. Instr. Methods 161, 173 (1979).CrossRefGoogle Scholar
20.Wüstenbecker, S., Becker, H.W., Rolfs, C., Trautvetter, H.P., Brand, K., Mitchell, G.E., and Schweitzer, J.S., Nucl. Instr. Methods A 256, 9 (1987).CrossRefGoogle Scholar
21.Mehrhoff, M., Aliotta, M., Baumvol, I.J.R., Becker, H.W., Berheide, M., Borucki, L., Domke, J., Gorris, F., Kubsky, S., Piel, N., Roters, G., Rolfs, C., and Schulte, W.H., Nucl. Instr. Methods B 132, 671 (1997).CrossRefGoogle Scholar
22.Borucki, L., Becker, H.W., Gorris, F., Kubsky, S., Schulte, W.H., and Rolfs, C., Eur. J. Phys. A 5, 327 (1999).CrossRefGoogle Scholar
23.Vandiver, P.V. and Kingery, W.D., Bull. Am. Ceram. Soc. 63, 612 (1984).Google Scholar
24.Shani, G., Radiation Dosimetry Instrumentation and Methods (CRC Press, Boca Raton, FL, 1991).Google Scholar
25.Danckwerts, P.V., Trans. Faraday Soc. 46, 300 (1950).CrossRefGoogle Scholar
26.Douglas, R.W. and El-Shamy, T.M.M., J. Am. Ceram. Soc. 50, 1 (1967).CrossRefGoogle Scholar
27.Taylor, H.F.W. and Turner, A.B., Cem. Concr. Res. 17, 613 (1987).CrossRefGoogle Scholar
28.Dent-Glasser, L.W., Cem. Concr. Res. 9, 515 (1979).CrossRefGoogle Scholar