Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T19:10:08.065Z Has data issue: false hasContentIssue false

Carbon-doped titania as a precursor for titanate nanotubes

Published online by Cambridge University Press:  03 April 2018

Uta Helbig*
Affiliation:
Department of Materials Engineering, Technische Hochschule Nuremberg Georg Simon Ohm, Nuremberg D-90489, Germany; and Institute for Chemistry, Materials and Product Development OHM-CMP, Technische Hochschule Nuremberg Georg Simon Ohm, Nuremberg D-90489, Germany
Kai Herbst
Affiliation:
Department of Materials Engineering, Technische Hochschule Nuremberg Georg Simon Ohm, Nuremberg D-90489, Germany
Jewgeni Roudenko
Affiliation:
Department of Materials Engineering, Technische Hochschule Nuremberg Georg Simon Ohm, Nuremberg D-90489, Germany; and Institute for Chemistry, Materials and Product Development OHM-CMP, Technische Hochschule Nuremberg Georg Simon Ohm, Nuremberg D-90489, Germany
Jens Helbig
Affiliation:
Institute for Chemistry, Materials and Product Development OHM-CMP, Technische Hochschule Nuremberg Georg Simon Ohm, Nuremberg D-90489, Germany
Bastian Barton
Affiliation:
Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University Mainz, Mainz D-55128, Germany
Ute Kolb
Affiliation:
Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University Mainz, Mainz D-55128, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Carbon-doped titania was fabricated via carbothermal treatment in nitrogen–acetylene gas flow and further used as a precursor for multiwalled titanate nanotube (TNT) synthesis via alkaline hydrothermal route. Investigation of the reaction products after hydrothermal treatment of carbon-doped titania using Transmission electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller method shows the successful formation of TNTs. The presence of carbon was proved although the type of incorporation could not be certified. All samples show approximately the same carbon content before and after hydrothermal treatment. An increasing pretreatment temperature of titania precursor powders yields more secondary products in the nanotube samples, indicating lower reactivity of the titanium oxycarbide phase during hydrothermal treatment. In this study, TNTs with 6 wt% carbon and with the highest specific surface area of 340 m2/g were formed via hydrothermal treatment of carbon-doped titania precursor powder exposed to 700 °C during carbothermal pretreatment.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sun, X. and Li, Y.: Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. – Eur. J. 9, 2229 (2003).CrossRefGoogle ScholarPubMed
Bavykin, D.V., Redmond, K.E., Nias, B.P., Kulak, A.N., and Walsh, F.C.: The effect of ionic charge on the adsorption of organic dyes onto titanate nanotubes. Aust. J. Chem. 63, 270 (2010).CrossRefGoogle Scholar
Bavykin, D.V., Friedrich, J.M., and Walsh, F.C.: Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 18, 2807 (2006).Google Scholar
Bavykin, D.V. and Walsh, F.C.: Elongated titanate nanostructures and their applications. Eur. J. Inorg. Chem. 2009, 977 (2009).CrossRefGoogle Scholar
Ou, H. and Lo, S.: Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Sep. Purif. Technol. 58, 179 (2007).Google Scholar
Štengl, V., Bakardjieva, S., Šubrt, J., Večerníková, E., Szatmary, L., Klementová, M., and Balek, V.: Sodium titanate nanorods: Preparation, microstructure characterization and photocatalytic activity. Appl. Catal., B 63, 20 (2006).Google Scholar
Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., and Grimes, C.A.: TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion. J. Phys. Chem. C 111, 14992 (2007).Google Scholar
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).Google Scholar
Pradhan, S.K., Mao, Y., Wong, S.S., Chupas, P., and Petkov, V.: Atomic-scale structure of nanosized titania and titanate: Particles, wires, and tubes. Chem. Mater. 19, 6180 (2007).Google Scholar
Liu, N., Chen, X., Zhang, J., and Schwank, J.W.: A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34 (2014).Google Scholar
Bavykin, D.V. and Walsh, F.C.: Titanate and Titania Nanotubes (Royal Society of Chemistry, Cambridge, 2009).Google Scholar
Alves, D.C.B., Fonseca, F.C., Brandão, F.D., Krambrock, K., and Ferlauto, A.S.: Temperature dependence of the electrical properties of hydrogen titanate nanotubes. J. Appl. Phys. 116, 184307 (2014).Google Scholar
Hu, W., Li, L., Li, G., Meng, J., and Tong, W.: Synthesis of titanate-based nanotubes for one-dimensionally confined electrical properties. J. Phys. Chem. C 113, 16996 (2009).Google Scholar
Kado, Y., Hahn, R., and Schmuki, P.: Surface modification of TiO2 nanotubes by low temperature thermal treatment in C2H2 atmosphere. J. Electroanal. Chem. 662, 25 (2011).CrossRefGoogle Scholar
Hahn, R., Ghicov, A., Salonen, J., Lehto, V-P., and Schmuki, P.: Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment. Nanotechnology 18, 105604 (2007).Google Scholar
Huang, K., Li, Y., and Xing, Y.: Carbothermal synthesis of titanium oxycarbide as electrocatalyst support with high oxygen evolution reaction activity. J. Mater. Res. 28, 454 (2013).CrossRefGoogle Scholar
Hahn, R., Schmidt-Stein, F., Salonen, J., Thiemann, S., Song, Y., Kunze, J., Lehto, V-P., and Schmuki, P.: Semimetallic TiO2 nanotubes. Angew. Chem., Int. Ed. Engl. 48, 7236 (2009).Google Scholar
Schmidt-Stein, F., Thiemann, S., Berger, S., Hahn, R., and Schmuki, P.: Mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Mater. 58, 6317 (2010).Google Scholar
Herbst, K.: Elektrisch leitfähige Ti–O–C–Nanotubes mit hoher spezifischer Oberfläche: (Electrically conductive Ti–O–C nanotubes with high specific surface area. -in German-). Dissertation, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany, 2015.Google Scholar
Zhang, M., Jin, Z., Zhang, J., Guo, X., Yang, J., Li, W., Wang, X., and Zhang, Z.: Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J. Mol. Catal. A: Chem. 217, 203 (2004).Google Scholar
Morgado, E., de Abreu, M.A., Pravia, O.R., Marinkovic, B.A., Jardim, P.M., Rizzo, F.C., and Araújo, A.S.: A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci. 8, 888 (2006).CrossRefGoogle Scholar
Wu, Z., Dong, F., Zhao, W., Wang, H., Liu, Y., and Guan, B.: The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 20, 235701 (2009).Google Scholar
Ansón-Casaos, A., Tacchini, I., Unzue, A., and Martínez, M.T.: Combined modification of a TiO2 photocatalyst with two different carbon forms. Appl. Surf. Sci. 270, 675 (2013).Google Scholar
Xu, J., Wang, Y., Li, Z., and Zhang, W.F.: Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium-ion batteries. J. Power Sources 175, 903 (2008).Google Scholar
Neville, E.M., MacElroy, J.D., Thampi, K.R., and Sullivan, J.A.: Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate TiO2: Photo-electrochemical and photocatalytic properties. J. Photochem. Photobiol., A 267, 17 (2013).CrossRefGoogle Scholar
Goriparti, S., Miele, E., Prato, M., Scarpellini, A., Marras, S., Monaco, S., Toma, A., Messina, G.C., Alabastri, A., de Angelis, F., Manna, L., Capiglia, C., and Zaccaria, R.P.: Direct synthesis of carbon-doped TiO2-bronze nanowires as anode materials for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 25139 (2015).Google Scholar
Lehmann, M.: Determination and correction of the coherent wave aberration from a single off-axis electron hologram by means of a genetic algorithm. Ultramicroscopy 85, 165 (2000).Google Scholar
Pohrelyuk, I.M., Yas’kiv, O.I., Fedirko, V.M., and Huryn, S.V.: Laws of formation of oxycarbide layers on titanium in carbon- and oxygen-containing media. Mater. Sci. 39, 400 (2003).Google Scholar
Tang, Y., Zhang, Y., Deng, J., Wei, J., Le Tam, H., Chandran, B.K., Dong, Z., Chen, Z., and Chen, X.: Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 26, 6111 (2014).Google Scholar
Yang, J., Jin, Z., Wang, X., Li, W., Zhang, J., Zhang, S., Guo, X., and Zhang, Z.: Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans. 20, 3898 (2003).Google Scholar
Papa, A-L., Millot, N., Saviot, L., Chassagnon, R., and Heintz, O.: Effect of reaction parameters on composition and morphology of titanate nanomaterials. J. Phys. Chem. C 113, 12682 (2009).Google Scholar
Hanaor, D.A.H. and Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011).Google Scholar
Tsumura, T., Kojitani, N., Izumi, I., Iwashita, N., Toyoda, M., and Inagaki, M.: Carbon coating of anatase-type TiO2 and photoactivity. J. Mater. Chem. 12, 1391 (2002).Google Scholar
Enache, C.S., Schoonman, J., and van de Krol, R.: Addition of carbon to anatase TiO2 by n-hexane treatment—Surface or bulk doping? Appl. Surf. Sci. 252, 6342 (2006).Google Scholar
Meng, Q., Li, X., Liu, L., and Cao, B.: High-temperature preparation and electrochemical properties of TiO2 anatase phase-mounted carbon aerogels. J. Mater. Sci. 47, 5926 (2012).Google Scholar
Morgan, D.L., Triani, G., Blackford, M.G., Raftery, N.A., Frost, R.L., and Waclawik, E.R.: Alkaline hydrothermal kinetics in titanate nanostructure formation. J. Mater. Sci. 46, 548 (2011).Google Scholar
Khedr, M.H., Abdel Halim, K.S., and Soliman, N.K.: Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes. Appl. Surf. Sci. 255, 2375 (2008).Google Scholar
Towell, G.D. and Martin, J.J.: Kinetic data from nonisothermal experiments: Thermal decomposition of ethane, ethylene, and acetylene. AIChE J. 7, 693 (1961).CrossRefGoogle Scholar
Andersson, S. and Magnéli, A.: Diskrete Titanoxydphasen im Zusammensetzungsbereich TiO1,75–TiO1,90. Naturwissenschaften 43, 495 (1956).Google Scholar
Walsh, F.C. and Wills, R.: The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes. Electrochim. Acta 55, 6342 (2010).Google Scholar
Dewan, M.A., Zhang, G., and Ostrovski, O.: Carbothermal reduction of titania in different gas atmospheres. Metall. Mater. Trans. B 40, 62 (2009).CrossRefGoogle Scholar
Sen, W., Xu, B-q., Yang, B., Sun, H-y., Song, J-x., Wan, H-l., and Dai, Y-n.: Preparation of TiC powders by carbothermal reduction method in vacuum. Trans. Nonferrous Met. Soc. China 21, 185 (2011).Google Scholar
Jiang, B., Hou, N., Huang, S., Zhou, G., Hou, J., Cao, Z., and Zhu, H.: Structural studies of TiC1−xOx solid solution by Rietveld refinement and first-principles calculations. J. Solid State Chem. 204, 1 (2013).CrossRefGoogle Scholar
Calvillo, L., Fittipaldi, D., Rüdiger, C., Agnoli, S., Favaro, M., Valero-Vidal, C., Di Valentin, C., Vittadini, A., Bozzolo, N., Jacomet, S., Gregoratti, L., Kunze-Liebhäuser, J., Pacchioni, G., and Granozzi, G.: Carbothermal transformation of TiO2 into TiOxCy in UHV: Tracking intrinsic chemical stabilities: Tracking intrinsic chemical stabilities. J. Phys. Chem. C 118, 22601 (2014).Google Scholar
Koc, R. and Folmer, J.S.: Carbothermal synthesis of titanium carbide using ultrafine titania powders. J. Mater. Sci. 32, 3101 (1997).CrossRefGoogle Scholar
Mozia, S., Borowiak-Paleń, E., Przepiórski, J., Grzmil, B., Tsumura, T., Toyoda, M., Grzechulska-Damszel, J., and Morawski, A.W.: Physico-chemical properties and possible photocatalytic applications of titanate nanotubes synthesized via hydrothermal method. J. Phys. Chem. Solids 71, 263 (2010).Google Scholar
Tsai, C-C. and Teng, H.: Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem. Mater. 16, 4352 (2004).Google Scholar
Wang, N., Lin, H., Li, J., Yang, X., Chi, B., and Lin, C.: Effect of annealing temperature on phase transition and optical property of titanate nanotubes prepared by ion exchange approach. J. Alloys Compd. 424, 311 (2006).CrossRefGoogle Scholar
Philipp, H.W.: Chemical Reactions of Carbides, Nitrides, and Diborides of Titanium and Zirconium and Chemical Bonding in these Compounds (NASA TN, Washington, D.C., 1966); p. 1.Google Scholar
Supplementary material: File

Helbig et al. supplementary material

Helbig et al. supplementary material 1

Download Helbig et al. supplementary material(File)
File 1.8 MB