Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T12:56:19.224Z Has data issue: false hasContentIssue false

A brief review on the growth mechanism of CuO nanowires via thermal oxidation

Published online by Cambridge University Press:  05 July 2018

Lijun Xiang*
Affiliation:
Wuhan Second Ship Design and Research Institute, Wuhan 430064, Hubei, China
Jian Guo*
Affiliation:
Wuhan Second Ship Design and Research Institute, Wuhan 430064, Hubei, China
Chenhui Wu
Affiliation:
Wuhan Second Ship Design and Research Institute, Wuhan 430064, Hubei, China
Menglei Cai
Affiliation:
Wuhan Second Ship Design and Research Institute, Wuhan 430064, Hubei, China
Xinrong Zhou
Affiliation:
Wuhan Second Ship Design and Research Institute, Wuhan 430064, Hubei, China
Nailiang Zhang
Affiliation:
Wuhan Second Ship Design and Research Institute, Wuhan 430064, Hubei, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

For one-dimensional nanomaterials, the performances are strongly related to the diameters, lengths, morphologies, and structures, implying that it is of great significance to understand the related growth mechanisms and thus to achieve the desired nanostructures. Thermal oxidation of copper has been widely used to fabricate CuO nanowires (NWs), whereas the growth mechanism still remains controversial in spite of the extensive investigations. Therefore, this review aims to offer a critical discussion about the growth mechanisms. First, the effects of different growth conditions on the growth of CuO NWs are introduced for basic understanding. Subsequently, the proposed mechanisms in different literature studies, i.e., the vapor–solid, self-catalyzed growth, stress-induced growth, stress grain boundary (GB) diffusion, and oxygen concentration gradient, are discussed and summarized. It seems that the combination of “stress GB diffusion” and “oxygen concentration gradient” mechanisms could be relevant for the growth of CuO NWs via thermal oxidation of copper.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Liu, L., Zhang, L., Kim, S.M., and Park, S.: Helical metallic micro- and nanostructures: Fabrication and application. Nanoscale 6, 9355 (2014).CrossRefGoogle ScholarPubMed
Li, Y., Yang, X-Y., Feng, Y., Yuan, Z-Y., and Su, B-L.: One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: Synthesis, characterizations, properties and applications. Crit. Rev. Solid State Mater. Sci. 37, 1 (2012).CrossRefGoogle Scholar
Arafat, M.M., Dinan, B., Akbar, S.A., and Haseeb, A.S.M.A.: Gas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors 12, 7207 (2012).CrossRefGoogle ScholarPubMed
Devan, R.S., Patil, R.A., Lin, J-H., and Ma, Y-R.: One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 22, 3326 (2012).CrossRefGoogle Scholar
Filipič, G. and Cvelbar, U.: Copper oxide nanowires: A review of growth. Nanotechnology 23, 194001 (2012).CrossRefGoogle Scholar
Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., and Yang, S.: CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208 (2014).CrossRefGoogle Scholar
Cao, F., Jia, S., Zheng, H., Zhao, L., Liu, H., Li, L., Zhao, L., Hu, Y., Gu, H., and Wang, J.: Thermal-induced formation of domain structures in CuO nanomaterials. Phys. Rev. Mater. 1, 053401 (2017).CrossRefGoogle Scholar
Liu, H., Cao, F., Zheng, H., Sheng, H., Li, L., Wu, S., Liu, C., and Wang, J.: In situ observation of the sodiation process in CuO nanowires. Chem. Commun. 51, 10443 (2015).CrossRefGoogle ScholarPubMed
Tan, G., Wu, F., Yuan, Y., Chen, R., Zhao, T., Yao, Y., Qian, J., Liu, J., Ye, Y., Shahbazian-Yassar, R., Lu, J., and Amine, K.: Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nat. Commun. 7, 11774 (2016).CrossRefGoogle ScholarPubMed
Anandan, S., Wen, X., and Yang, S.: Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 93, 35 (2005).CrossRefGoogle Scholar
Hsieh, C-T., Chen, J-M., Lin, H-H., and Shih, H-C.: Field emission from various CuO nanostructures. Appl. Phys. Lett. 83, 3383 (2003).CrossRefGoogle Scholar
Feng, Y. and Zheng, X.: Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Lett. 10, 4762 (2010).CrossRefGoogle ScholarPubMed
Liu, X., Yang, W., Chen, L., and Jia, J.: Three-dimensional copper foam supported CuO nanowire arrays: An efficient non-enzymatic glucose sensor. Electrochim. Acta 235, 519 (2017).CrossRefGoogle Scholar
Zappa, D., Comini, E., Zamani, R., Arbiol, J., Morante, J.R., and Sberveglieri, G.: Preparation of copper oxide nanowire-based conductometric chemical sensors. Sens. Actuators, B 182, 7 (2013).CrossRefGoogle Scholar
Sheng, H., Zheng, H., Jia, S., Li, L., Cao, F., Wu, S., Han, W., Liu, H., Zhao, D., and Wang, J.: Twin structures in CuO nanowires. J. Appl. Crystallogr. 49, 462 (2016).CrossRefGoogle Scholar
Cao, M., Hu, C., Wang, Y., Guo, Y., Guo, C., and Wang, E.: A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem. Commun., 1884 (2003).CrossRefGoogle ScholarPubMed
Shrestha, K.M., Sorensen, C.M., and Klabunde, K.J.: Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J. Phys. Chem. C 114, 14368 (2010).CrossRefGoogle Scholar
Liu, X., Zhang, J., Kang, Y., Wu, S., and Wang, S.: Brochantite tabular microspindles and their conversion to wormlike CuO structures for gas sensing. CrystEngComm 14, 620 (2012).CrossRefGoogle Scholar
Fan, Y., Liu, R., Du, W., Lu, Q., Pang, H., and Gao, F.: Synthesis of copper(II) coordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ion battery performances. J. Mater. Chem. 22, 12609 (2012).CrossRefGoogle Scholar
Wang, W., Wang, L., Shi, H., and Liang, Y.: A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. CrystEngComm 14, 5914 (2012).CrossRefGoogle Scholar
Ethiraj, A.S. and Kang, D.J.: Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 7, 70 (2012).CrossRefGoogle ScholarPubMed
Toboonsung, B. and Singjai, P.: Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. J. Alloys Compd. 509, 4132 (2011).CrossRefGoogle Scholar
Mukherjee, N., Show, B., Maji, S.K., Madhu, U., Bhar, S.K., Mitra, B.C., Khan, G.G., and Mondal, A.: CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 65, 3248 (2011).CrossRefGoogle Scholar
Jiang, X., Herricks, T., and Xia, Y.: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333 (2002).CrossRefGoogle Scholar
Hsieh, C-T., Chen, J-M., Lin, H-H., and Shih, H-C.: Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl. Phys. Lett. 82, 3316 (2003).CrossRefGoogle Scholar
Kumar, A., Srivastava, A.K., Tiwari, P., and Nandedkar, R.V.: The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys.: Condens. Matter 16, 8531 (2004).Google Scholar
Gonçalves, A.M.B., Campos, L.C., Ferlauto, A.S., and Lacerda, R.G.: On the growth and electrical characterization of CuO nanowires by thermal oxidation. J. Appl. Phys. 106, 034303 (2009).CrossRefGoogle Scholar
Mimura, K., Lim, J-W., Isshiki, M., Zhu, Y., and Jiang, Q.: Brief review of oxidation kinetics of copper at 350 °C to 1050 °C. Metall. Mater. Trans. A 37, 1231 (2006).CrossRefGoogle Scholar
Zhang, R.F.: Film formation in the second step of micro-arc oxidation on magnesium alloys. Corros. Sci. 52, 1285 (2010).CrossRefGoogle Scholar
Laleh, M., Rouhaghdam, A.S., Shahrabi, T., and Shanghi, A.: Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J. Alloys Compd. 496, 548 (2010).CrossRefGoogle Scholar
Yu, H-D., Zhang, Z., and Han, M-Y.: Metal corrosion for nanofabrication. Small 8, 2621 (2012).CrossRefGoogle ScholarPubMed
Zheng, H., Wu, S., Sheng, H., Liu, C., Liu, Y., Cao, F., Zhou, Z., Zhao, X., Zhao, D., and Wang, J.: Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation. Appl. Phys. Lett. 104, 141906 (2014).CrossRefGoogle Scholar
Glass, S. and Nienhaus, H.: Continuous monitoring of Mg oxidation by internal exoemission. Phys. Rev. Lett. 93, 168302 (2004).CrossRefGoogle ScholarPubMed
Wang, Y., Fan, Z., Zhou, X., and Thompson, G.E.: Characterisation of magnesium oxide and its interface with α-Mg in Mg–Al-based alloys. Philos. Mag. Lett. 91, 516 (2011).CrossRefGoogle Scholar
Bungaro, C., Noguera, C., Ballone, P., and Kress, W.: Early oxidation stages of Mg(0001): A density functional study. Phys. Rev. Lett. 79, 4433 (1997).CrossRefGoogle Scholar
Francis, M.F. and Taylor, C.D.: First-principles insights into the structure of the incipient magnesium oxide and its instability to decomposition: Oxygen chemisorption to Mg(0001) and thermodynamic stability. Phys. Rev. B 87, 075450 (2013).CrossRefGoogle Scholar
Zhou, G., Luo, L., Li, L., Ciston, J., Stach, E.A., and Yang, J.C.: Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 109, 235502 (2012).CrossRefGoogle ScholarPubMed
Atkinson, A. and Taylor, R.I.: The diffusion of Ni in the bulk and along dislocations in NiO single crystals. Philos. Mag. A 39, 581 (1979).CrossRefGoogle Scholar
Lawless, K.R.: The oxidation of metals. Rep. Prog. Phys. 37, 231 (1974).CrossRefGoogle Scholar
Atkinson, A.: Transport processes during the growth of oxide films at elevated temperature. Rev. Mod. Phys. 57, 437 (1985).CrossRefGoogle Scholar
Schröder, E., Fasel, R., and Kiejna, A.: Mg(0001) surface oxidation: A two-dimensional oxide phase. Phys. Rev. B 69, 193405 (2004).CrossRefGoogle Scholar
Tylecote, R.F.: The oxidation of copper in the temperature range 200–800 °C. J. Inst. Met. 81, 681 (1952).Google Scholar
Yang, Q., Guo, Z., Zhou, X., Zou, J., and Liang, S.: Ultrathin CuO nanowires grown by thermal oxidation of copper powders in air. Mater. Lett. 153, 128 (2015).CrossRefGoogle Scholar
Vanithakumari, S.C., Shinde, S.L., and Nanda, K.K.: Controlled synthesis of CuO nanostructures on Cu foil, rod and grid. Mater. Sci. Eng., B 176, 669 (2011).CrossRefGoogle Scholar
Sheng, H., Zheng, H., Cao, F., Wu, S., Li, L., Liu, C., Zhao, D., and Wang, J.: Anelasticity of twinned CuO nanowires. Nano Res. 8, 3687 (2015).CrossRefGoogle Scholar
Zhang, K., Rossi, C., Tenailleau, C., Alphonse, P., and Chane-Ching, J.Y.: Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate. Nanotechnology 18, 275607 (2007).CrossRefGoogle Scholar
Hsu, C-L., Tsai, J-Y., and Hsueh, T-J.: Ethanol gas and humidity sensors of CuO/Cu2O composite nanowires based on a Cu through-silicon via approach. Sens. Actuators, B 224, 95 (2016).CrossRefGoogle Scholar
Zhong, M.L., Zeng, D.C., Liu, Z.W., Yu, H.Y., Zhong, X.C., and Qiu, W.Q.: Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater. 58, 5926 (2010).CrossRefGoogle Scholar
Kaur, M., Muthe, K.P., Despande, S.K., Choudhury, S., Singh, J.B., Verma, N., Gupta, S.K., and Yakhmi, J.V.: Growth and branching of CuO nanowires by thermal oxidation of copper. J. Cryst. Growth 289, 670 (2006).CrossRefGoogle Scholar
Xu, C.H., Woo, C.H., and Shi, S.Q.: The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates. Superlattices Microstruct. 36, 31 (2004).CrossRefGoogle Scholar
Tu, C-H., Chang, C-C., Wang, C-H., Fang, H-C., Huang, M.R.S., Li, Y-C., Chang, H-J., Lu, C-H., Chen, Y-C., Wang, R-C., Tzeng, Y., and Liu, C-P.: Resistive memory devices with high switching endurance through single filaments in Bi-crystal CuO nanowires. J. Alloys Compd. 615, 754 (2014).CrossRefGoogle Scholar
Han, Z., Lu, L., Zhang, H.W., Yang, Z.Q., Wang, F.H., and Lu, K.: Comparison of the oxidation behavior of nanocrystalline and coarse-grain copper. Oxid. Met. 63, 261 (2005).CrossRefGoogle Scholar
Hansen, B.J., Chan, H-l., Lu, J., Lu, G., and Chen, J.: Short-circuit diffusion growth of long Bi-crystal CuO nanowires. Chem. Phys. Lett. 504, 41 (2011).CrossRefGoogle Scholar
Yuan, L. and Zhou, G.: Enhanced CuO nanowire formation by thermal oxidation of roughened copper. J. Electrochem. Soc. 159, C205 (2012).CrossRefGoogle Scholar
Shao, P., Deng, S., Chen, J., and Xu, N.: Large-scale fabrication of ordered arrays of microcontainers and the restraint effect on growth of CuO nanowires. Nanoscale Res. Lett. 6, 86 (2011).CrossRefGoogle ScholarPubMed
Li, X., Zhang, J., Yuan, Y., Liao, L., and Pan, C.: Effect of electric field on CuO nanoneedle growth during thermal oxidation and its growth mechanism. J. Appl. Phys. 108, 024308 (2010).CrossRefGoogle Scholar
Wang, J-P. and Cho, W.D.: Oxidation behavior of pure copper in oxygen and/or water vapor at intermediate temperature. ISIJ Int. 49, 1926 (2009).CrossRefGoogle Scholar
Rao, P.M. and Zheng, X.: Rapid catalyst-free flame synthesis of dense, aligned α-Fe2O3 nanoflake and CuO nanoneedle arrays. Nano Lett. 9, 3001 (2009).CrossRefGoogle ScholarPubMed
Simas, R., Albert, G.N., Hua, J., Ying, T., Victor, I.K., Jani, S., Elena, D.O., Sofia, N.B., Alexander, N.O., and Esko, I.K.: A novel method for metal oxide nanowire synthesis. Nanotechnology 20, 165603 (2009).Google Scholar
Filipič, G., Baranov, O., Mozetič, M., and Cvelbar, U.: Growth dynamics of copper oxide nanowires in plasma at low pressures. J. Appl. Phys. 117, 043304 (2015).CrossRefGoogle Scholar
Altaweel, A., Filipič, G., Gries, T., and Belmonte, T.: Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow. J. Cryst. Growth 407, 17 (2014).CrossRefGoogle Scholar
Wagner, R.S. and Ellis, W.C.: Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
Brenner, S.S. and Sears, G.W.: Mechanism of whisker growth—III nature of growth sites. Acta Metall. 4, 268 (1956).CrossRefGoogle Scholar
Park, J-H. and Natesan, K.: Oxidation of copper and electronic transport in copper oxides. Oxid. Met. 39, 411 (1993).CrossRefGoogle Scholar
Zhu, Y., Mimura, K., and Isshiki, M.: Influence of oxide grain morphology on formation of the CuO scale during oxidation of copper at 600–1000 °C. Corros. Sci. 47, 537 (2005).CrossRefGoogle Scholar
Yuan, L., Wang, Y., Mema, R., and Zhou, G.: Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 59, 2491 (2011).CrossRefGoogle Scholar
Lu, L., Wang, J., Zheng, H., Zhao, D., Wang, R., and Gui, J.: Spontaneous formation of filamentary Cd whiskers and degradation of CdMgYb icosahedral quasicrystal under ambient conditions. J. Mater. Res. 27, 1895 (2012).CrossRefGoogle Scholar
Farbod, M., Meamar Ghaffari, N., and Kazeminezhad, I.: Fabrication of single phase CuO nanowires and effect of electric field on their growth and investigation of their photocatalytic properties. Ceram. Int. 40, 517 (2014).CrossRefGoogle Scholar
Chen, J.T., Zhang, F., Wang, J., Zhang, G.A., Miao, B.B., Fan, X.Y., Yan, D., and Yan, P.X.: CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268 (2008).CrossRefGoogle Scholar
Lee, S-K. and Tuan, W-H.: Scalable process to produce CuO nanowires and their formation mechanism. Mater. Lett. 117, 101 (2014).CrossRefGoogle Scholar
Mema, R., Yuan, L., Du, Q., Wang, Y., and Zhou, G.: Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512, 87 (2011).CrossRefGoogle Scholar
Cao, F., Zheng, H., Jia, S., Liu, H., Li, L., Chen, B., Liu, X., Wu, S., Sheng, H., Xing, R., Zhao, D., and Wang, J.: Atomistic observation of structural evolution during magnesium oxide growth. J. Phys. Chem. C 120, 26873 (2016).CrossRefGoogle Scholar
Xu, C., Yang, X., Shi, S-Q., Liu, Y., Surya, C., and Woo, C.: Effects of local gas-flow field on synthesis of oxide nanowires during thermal oxidation. Appl. Phys. Lett. 92, 253117 (2008).CrossRefGoogle Scholar
Rice, K.P., Han, J., Campbell, I.P., and Stoykovich, M.P.: In situ absorbance spectroscopy for characterizing the low temperature oxidation kinetics of sputtered copper films. Oxid. Met. 83, 89 (2015).CrossRefGoogle Scholar
Xu, C.H., Woo, C.H., and Shi, S.Q.: Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62 (2004).CrossRefGoogle Scholar
Wang, C., Wang, Y., Liu, X., Diao, F., Yuan, L., and Zhou, G.: Novel hybrid nanocomposites of polyhedral Cu2O nanoparticles–CuO nanowires with enhanced photoactivity. Phys. Chem. Chem. Phys. 16, 17487 (2014).CrossRefGoogle ScholarPubMed
Cao, F., Jia, S., Liu, X., Liu, Y., Zheng, H., and Wang, J.: Orientation domains in CuO nanowires. J. Chin. Electron Microsc. Soc. 36, 222 (2017).Google Scholar
Altaweel, A., Gries, T., Migot, S., Boulet, P., Mézin, A., and Belmonte, T.: Localised growth of CuO nanowires by micro-afterglow oxidation at atmospheric pressure: Investigation of the role of stress. Surf. Coat. Technol. 305, 254 (2016).CrossRefGoogle Scholar
Cvelbar, U.: Towards large-scale plasma-assisted synthesis of nanowires. J. Phys. D: Appl. Phys. 44, 174014 (2011).CrossRefGoogle Scholar
Ostrikov, K., Levchenko, I., Cvelbar, U., Sunkara, M., and Mozetic, M.: From nucleation to nanowires: A single-step process in reactive plasmas. Nanoscale 2, 2012 (2010).CrossRefGoogle ScholarPubMed
Cvelbar, U., Chen, Z., Sunkara, M.K., and Mozetič, M.: Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small 4, 1610 (2008).CrossRefGoogle ScholarPubMed
Chen, Z., Cvelbar, U., Mozetič, M., He, J., and Sunkara, M.K.: Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts. Chem. Mater. 20, 3224 (2008).CrossRefGoogle Scholar
Nasibulin, A., Rackauskas, S., Jiang, H., Tian, Y., Mudimela, P., Shandakov, S., Nasibulina, L., Jani, S., and Kauppinen, E.: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2, 373 (2009).CrossRefGoogle Scholar
Zou, L., Li, J., Zakharov, D., Stach, E.A., and Zhou, G.: In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).CrossRefGoogle ScholarPubMed
Li, L., Luo, L., Ciston, J., Saidi, W.A., Stach, E.A., Yang, J.C., and Zhou, G.: Surface-step-induced oscillatory oxide growth. Phys. Rev. Lett. 113, 136104 (2014).CrossRefGoogle ScholarPubMed
Ferris, A., Reig, B., Eddarir, A., Pierson, J-F., Garbarino, S., Guay, D., and Pech, D.: Atypical properties of FIB-patterned RuOx nanosupercapacitors. ACS Energy Lett. 2, 1734 (2017).CrossRefGoogle Scholar