Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:34:43.575Z Has data issue: false hasContentIssue false

Boron and antimony codiffusion in silicon

Published online by Cambridge University Press:  31 January 2011

B. Margesin
Affiliation:
IRST, 30050 Povo, Italy
R. Canteri
Affiliation:
IRST, 30050 Povo, Italy
S. Solmi
Affiliation:
CNR-Instituto LAMEL, Via Castagnoli 1, 40126 Bologna, Italy
A. Armigliato
Affiliation:
CNR-Instituto LAMEL, Via Castagnoli 1, 40126 Bologna, Italy
F. Baruffaldi
Affiliation:
CNR-Instituto LAMEL, Via Castagnoli 1, 40126 Bologna, Italy
Get access

Abstract

The codiffusion of B and Sb implanted in Si with a dose of 2 × 1016 cm−2, corresponding to concentration far above the solid solubility, is investigated at 900 and 1000 °C on the basis of SIMS and carrier profile measurements and TEM observations. The comparison of the codiffusion data with the corresponding ones obtained by the diffusion of each element alone revealed several anomalous effects due to dopant interaction. In particular, our experimental results support the hypothesis of the formation of mobile donor-acceptor pairs and of the increase of the Sb solubility in the region where a high concentration of acceptors is present. On the basis of this feature, a diffusion model that takes pairing and precipitation into account is presented. A simulation program including this model allows us to foresee most of the anomalous phenomena occurring in the high concentration codiffusion experiments and shows in general a satisfactory agreement with experimental profiles.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wicher, Th., Swanson, M. L., and Queenville, A. F., Phys. Rev. Lett. 57, 1759 (1986).Google Scholar
2.Yu Shiryaev, S., Larsen, A. Nylandsted, and Safronov, N., Appl. Phys. Lett, (in press).Google Scholar
3.Culbertson, R. J. and Pennycook, S. J., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 391.Google Scholar
4.Fair, R. B., Manda, M. L., and Wortman, J. J., J. Mater. Res. 1, 705 (1986).CrossRefGoogle Scholar
5.Cowern, N. E. B., Appl. Phys. Lett. 54, 703 (1989).CrossRefGoogle Scholar
6.Solmi, S., Landi, E., and Baruffaldi, F., J. Appl. Phys. 68, 3250 (1990).CrossRefGoogle Scholar
7.Armigliato, A., Nobili, D., Ostoja, P., Servidori, M., and Solmi, S., in Semiconductor Silicon 1977, edited by Huff, H. and Sirtl, E. (The Electrochemical Soc. Inc., Princeton, NJ, 1977), Vol. 77–2, p. 638.Google Scholar
8.Solmi, S., Baruffaldi, F., and Canteri, R., J. Appl. Phys. 69, 2135 (1991).CrossRefGoogle Scholar
9.Fair, R. B., in Silicon Integrated Circuits, edited by Kahug, D. (Academic Press, New York, 1981), p. 1.Google Scholar
10.Baruffaldi, F. and Solmi, S. (unpublished research).Google Scholar
11.Nobili, D., Angelucci, R., Armigliato, A., Landi, E., and Solmi, S., J. Electrochem. Soc. 136, 1142 (1989).CrossRefGoogle Scholar
12.Ho, C. P., Plummer, J. D., Hansen, S. E., and Dutton, R. W., IEEE Trans. Electron Devices ED-30, 1438 (1983).CrossRefGoogle Scholar
13.Swanson, M. L., Wichert, Th., and Queenville, A. F., Appl. Phys. Lett. 49, 265 (1986).CrossRefGoogle Scholar
14.Reiss, H., Fuller, C. S., and Morin, J. J., Bell System Tech. J. 35, 535 (1956).CrossRefGoogle Scholar
15.Solmi, S., Angelucci, R., Cembali, F., Servidori, M., and Anderle, M., Appl. Phys. Lett. 51, 331 (1987).CrossRefGoogle Scholar
16.Solmi, S., Cembali, F., Fabbri, R., Servidori, M., and Canteri, R., Appl. Phys. A 48, 255 (1989).CrossRefGoogle Scholar
17.Solmi, S. (unpublished research).Google Scholar