Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T18:04:31.783Z Has data issue: false hasContentIssue false

Atomistic consideration of earth-abundant chalcogenide materials for photovoltaics: Kesterite and beyond

Published online by Cambridge University Press:  12 October 2018

Jekyung Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
Liudmila Larina
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
Sung-Yoon Chung
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
Donghyeop Shin*
Affiliation:
Photovoltaic Laboratory, Korea Institute of Energy Research, Daejeon 34129, South Korea
Byungha Shin*
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Despite the potential as a promising alternative to CdTe and Cu(In,Ga)Se2, the kesterite compound Cu2ZnSn(S,Se)4 (CZTSSe) presents a critical challenge mainly from its high open-circuit voltage (Voc) deficit. Indeed, the Voc of the record CZTSSe solar cell to date has accounted for only 61% of that calculated by the Shockley–Queisser limit, whose origin can be ascribed to nonradiative recombination from a high density of defects and secondary phases. Therefore, an atomistic understanding and characterization of CZTSSe is highly essential to overcoming the current shortcomings in kesterite. This review discusses the advanced characterization techniques for studying the intrinsic properties of kesterite at a nanometer scale. Moreover, a cation substitution with an ionic mismatch around constituents is recognized as an effective route to address the fundamental limit (i.e., the cationic disorder) in CZTSSe. Here, we review recent studies on a novel chalcogenide Cu2BaSn(S,Se)4 that substitutes Zn with Ba and results in less cationic disordering.

Type
Invited Feature Paper - REVIEW
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Siebentritt, S. and Schorr, S.: Kesterites—A challenging material for solar cells. Prog. Photovoltaics 20, 512 (2012).CrossRefGoogle Scholar
Walsh, A., Chen, S., Wei, S.-H., and Gong, X.-G.: Kesterite thin‐film solar cells: Advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400 (2012).CrossRefGoogle Scholar
Friedlmeier, T.M., Wieser, N., Walter, T., Dittrich, H., and Schock, H.W.: Heterojuncitons based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films. In Proceedings of the 14th European PVSEC, Barcelona, Spain, 1997, Ossenbrink, H.A., Helm, P., and Ehmann, H., eds. (H.S. Stephens & Associates, Bedford, UK, 1997); p. 1242.Google Scholar
Hironori, K., Kazuo, J., Satoru, Y., Tsuyoshi, K., Win Shwe, M., Tatsuo, F., Tadashi, I., and Tomoyoshi, M.: Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Express 1, 041201 (2008).Google Scholar
Katagiri, H., Saitoh, K., Washio, T., Shinohara, H., Kurumadani, T., and Miyajima, S.: Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 65, 141 (2001).CrossRefGoogle Scholar
Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., and Mitzi, D.B.: Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014).Google Scholar
Solar, F.: First Solar Achieves Yet Another Cell Conversion Efficiency World Record (First Solar, 2016). Available at: https://www.printedelectronicsnow.com/contents/view_breaking-news/2015-02-05/first-solar-achieves-efficiency-durability-milestones/46380 (accessed May 2, 2015).Google Scholar
Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W., and Powalla, M.: Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL 10, 583 (2016).CrossRefGoogle Scholar
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234 (2015).CrossRefGoogle ScholarPubMed
Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
Rühle, S.: Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139 (2016).CrossRefGoogle Scholar
Shockley, W. and Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952).CrossRefGoogle Scholar
Hall, R.N.: Electron-hole recombination in germanium. Phys. Rev. 87, 387 (1952).CrossRefGoogle Scholar
Kim, J. and Shin, B.: Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells. Electron. Mater. Lett. 13, 373 (2017).CrossRefGoogle Scholar
Yan, C., Sun, K., Huang, J., Johnston, S., Liu, F., Veettil, B.P., Sun, K., Pu, A., Zhou, F., Stride, J.A., Green, M.A., and Hao, X.: Beyond 11% efficient sulfide kesterite Cu2ZnxCd1−xSnS4 solar cell: Effects of cadmium alloying. ACS Energy Lett. 2, 930 (2017).CrossRefGoogle Scholar
Lee, Y.S., Gershon, T., Gunawan, O., Todorov, T.K., Gokmen, T., Virgus, Y., and Guha, S.: Cu2ZnSnSe4 thin‐film solar cells by thermal co‐evaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv. Energy Mater. 5, 1401372 (2015).Google Scholar
Gokmen, T., Gunawan, O., Todorov, T.K., and Mitzi, D.B.: Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett. 103, 103506 (2013).CrossRefGoogle Scholar
Chen, S., Gong, X.G., Walsh, A., and Wei, S-H.: Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010).CrossRefGoogle Scholar
Chen, S., Walsh, A., Gong, X.G., and Wei, S.H.: Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth‐abundant solar cell absorbers. Adv. Mater. 25, 1522 (2013).CrossRefGoogle ScholarPubMed
Xu, P., Chen, S., Huang, B., Xiang, H.J., Gong, X-G., and Wei, S-H.: Stability and electronic structure of Cu2ZnSnS4 surfaces: First-principles study. Phys. Rev. B 88, 045427 (2013).CrossRefGoogle Scholar
Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K., and Guha, S.: The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421 (2011).CrossRefGoogle Scholar
Kim, S., Park, J-S., and Walsh, A.: Identification of killer defects in kesterite thin-film solar cells. ACS Energy Lett. 3, 496 (2018).Google Scholar
Choubrac, L., Lafond, A., Guillot-Deudon, C., Moëlo, Y., and Jobic, S.: Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: From the stoichiometric to the copper-poor compounds. Inorg. Chem. 51, 3346 (2012).CrossRefGoogle ScholarPubMed
Lafond, A., Choubrac, L., Guillot‐Deudon, C., Deniard, P., and Jobic, S.: Crystal structures of photovoltaic chalcogenides, an intricate puzzle to solve: The cases of CIGSe and CZTS materials. Z. Anorg. Allg. Chem. 638, 2571 (2012).CrossRefGoogle Scholar
Siebentritt, S.: Why are kesterite solar cells not 20% efficient? Thin Solid Films 535, 1 (2013).CrossRefGoogle Scholar
Du, H., Yan, F., Young, M., To, B., Jiang, C-S., Dippo, P., Kuciauskas, D., Chi, Z., Lund, E.A., Hancock, C., OO, W.M.H., Scarpulla, M.A., and Teeter, G.: Investigation of combinatorial coevaporated thin film Cu2ZnSnS4. I. Temperature effect, crystalline phases, morphology, and photoluminescence. J. Appl. Phys. 115, 173502 (2014).CrossRefGoogle Scholar
Wallace, S.K., Mitzi, D.B., and Walsh, A.: The steady rise of kesterite solar cells. ACS Energy Lett. 2, 776 (2017).CrossRefGoogle Scholar
Bourdais, S., Choné, C., Delatouche, B., Jacob, A., Larramona, G., Moisan, C., Lafond, A., Donatini, F., Rey, G., Siebentritt, S., Walsh, A., and Dennler, G.: Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 6, 1502276 (2016).CrossRefGoogle Scholar
Schorr, S., Hoebler, H-J., and Tovar, M.: A neutron diffraction study of the stannite-kesterite solid solution series. Eur. J. Mineral. 19, 65 (2007).CrossRefGoogle Scholar
Washio, T., Nozaki, H., Fukano, T., Motohiro, T., Jimbo, K., and Katagiri, H.: Analysis of lattice site occupancy in kesterite structure of Cu2ZnSnS4 films using synchrotron radiation X-ray diffraction. J. Appl. Phys. 110, 074511 (2011).CrossRefGoogle Scholar
Lafond, A., Choubrac, L., Guillot-Deudon, C., Fertey, P., Evain, M., and Jobic, S.: X-ray resonant single-crystal diffraction technique, a powerful tool to investigate the kesterite structure of the photovoltaic Cu2ZnSnS4 compound. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 70, 390 (2014).CrossRefGoogle ScholarPubMed
Stone, K.H., Christensen, S.T., Harvey, S.P., Teeter, G., Repins, I.L., and Toney, M.F.: Quantifying point defects in Cu2ZnSn(S,Se)4 thin films using resonant X-ray diffraction. Appl. Phys. Lett. 109, 161901 (2016).CrossRefGoogle Scholar
Gershon, T., Shin, B., Bojarczuk, N., Gokmen, T., Lu, S., and Guha, S.: Photoluminescence characterization of a high-efficiency Cu2ZnSnS4 device. J. Appl. Phys. 114, 154905 (2013).CrossRefGoogle Scholar
Grossberg, M., Krustok, J., Raadik, T., Kauk-Kuusik, M., and Raudoja, J.: Photoluminescence study of disordering in the cation sublattice of Cu2ZnSnS4. Curr. Appl. Phys. 14, 1424 (2014).CrossRefGoogle Scholar
Choubrac, L., Paris, M., Lafond, A., Guillot-Deudon, C., Rocquefelte, X., and Jobic, S.: Multinuclear (67Zn, 119Sn, and 65Cu) NMR spectroscopy—An ideal technique to probe the cationic ordering in Cu2ZnSnS4 photovoltaic materials. Phys. Chem. Chem. Phys. 15, 10722 (2013).CrossRefGoogle Scholar
Paris, M., Larramona, G., Bais, P., Bourdais, S., Lafond, A., Choné, C., Guillot-Deudon, C., Delatouche, B., Moisan, C., and Dennler, G.: 119Sn MAS NMR to assess the cationic disorder and the anionic distribution in sulfoselenide Cu2ZnSn(SxSe1−x)4 compounds prepared from colloidal and ceramic routes. J. Phys. Chem. C 119, 26849 (2015).CrossRefGoogle Scholar
Mendis, B.G., Shannon, M.D., Goodman, M.C., Major, J.D., Claridge, R., Halliday, D.P., and Durose, K.: Direct observation of Cu, Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy. Prog. Photovoltaics 22, 24 (2014).CrossRefGoogle Scholar
Aguiar, J.A., Erkan, M.E., Pruzan, D.S., Nagaoka, A., Yoshino, K., Moutinho, H., Al‐Jassim, M., and Scarpulla, M.A.: Cation ratio fluctuations in Cu2ZnSnS4 at the 20nm length scale investigated by analytical electron microscopy. Phys. Status Solidi A 213, 2392 (2016).CrossRefGoogle Scholar
Kattan, N.A., Griffiths, I.J., Cherns, D., and Fermin, D.J.: Observation of antisite domain boundaries in Cu2ZnSnS4 by atomic-resolution transmission electron microscopy. Nanoscale 8, 14369 (2016).CrossRefGoogle ScholarPubMed
Mendis, B.G., McKenna, K.P., Gurieva, G., Rumsey, M.S., and Schorr, S.: Crystal structure and anti-site boundary defect characterisation of Cu2ZnSnSe4. J. Mater. Chem. A 6, 189 (2018).CrossRefGoogle Scholar
Kumar, M., Dubey, A., Adhikari, N., Venkatesan, S., and Qiao, Q.: Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells. Energy Environ. Sci. 8, 3134 (2015).CrossRefGoogle Scholar
Kelly, T.F. and Miller, M.K.: Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007).CrossRefGoogle ScholarPubMed
Schwarz, T., Marques, M.A.L., Botti, S., Mousel, M., Redinger, A., Siebentritt, S., Cojocaru-Mirédin, O., Raabe, D., and Choi, P-P.: Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films. Appl. Phys. Lett. 107, 172102 (2015).CrossRefGoogle Scholar
Schwarz, T., Cojocaru-Mirédin, O., Choi, P., Mousel, M., Redinger, A., Siebentritt, S., and Raabe, D.: Atom probe tomography study of internal interfaces in Cu2ZnSnSe4 thin-films. J. Appl. Phys. 118, 095302 (2015).Google Scholar
Schwarz, T., Cojocaru-Mirédin, O., Mousel, M., Redinger, A., Raabe, D., and Choi, P-P.: Formation of nanometer-sized Cu–Sn–Se particles in Cu2ZnSnSe4 thin-films and their effect on solar cell efficiency. Acta Mater. 132, 276 (2017).CrossRefGoogle Scholar
Jaffe, J.E. and Zunger, A.: Anion displacements and the band-gap anomaly in ternary ABC2 chalcopyrite semiconductors. Phys. Rev. B 27, 5176 (1983).CrossRefGoogle Scholar
Chen, S., Gong, X.G., Walsh, A., and Wei, S-H.: Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: First-principles insights. Appl. Phys. Lett. 94, 041903 (2009).CrossRefGoogle Scholar
Persson, C. and Zunger, A.: Compositionally induced valence-band offset at the grain boundary of polycrystalline chalcopyrites creates a hole barrier. Appl. Phys. Lett. 87, 211904 (2005).CrossRefGoogle Scholar
Gloeckler, M., Sites, J.R., and Metzger, W.K.: Grain-boundary recombination in Cu(In,Ga)Se2 solar cells. J. Appl. Phys. 98, 113704 (2005).CrossRefGoogle Scholar
Kim, J.H., Choi, S.-Y., Choi, M., Gershon, T., Lee, Y.S., Wang, W., Shin, B., and Chung, S.-Y.: Atomic‐scale observation of oxygen substitution and its correlation with hole‐transport barriers in Cu2ZnSnSe4 thin‐film solar cells. Adv. Energy Mater. 6, 1501902 (2016).CrossRefGoogle Scholar
Sardashti, K., Haight, R., Gokmen, T., Wang, W., Chang, L-Y., Mitzi, D.B., Kummel, A.C.: Impact of nanoscale elemental distribution in high‐performance kesterite solar cells. Adv. Energy Mater. 5, 1402180 (2015).CrossRefGoogle Scholar
Schwarz, T. and GmbH, S.V.: On the nano-scale characterization of kesterite thin-films. Ph.D.thesis, RWTH Aachen, 2015.Google Scholar
Takeshi, N., Tsuyoshi, M., Kouji, T., Masaru, M., and Takahiro, W.: Crystal structures and band‐gap energies of Cu2Sn(S,Se)3 (0 ≤ x ≤ 1.0) solid solution. Phys. Status Solidi C 10, 1093 (2013).Google Scholar
Rau, U. and Werner, J.H.: Radiative efficiency limits of solar cells with lateral band-gap fluctuations. Appl. Phys. Lett. 84, 3735 (2004).CrossRefGoogle Scholar
Shannon, R.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
Yuan, Z.-K., Chen, S., Xiang, H., Gong, X.-G., Walsh, A., Park, J.-S., Repins, I., and Wei, S.-H.: Engineering solar cell absorbers by exploring the band alignment and defect disparity: The case of Cu‐ and Ag‐based kesterite compounds. Adv. Funct. Mater. 25, 6733 (2015).CrossRefGoogle Scholar
Chagarov, E., Sardashti, K., Kummel, A.C., Lee, Y.S., Haight, R., and Gershon, T.S.: Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics. J. Chem. Phys. 144, 104704 (2016).CrossRefGoogle ScholarPubMed
Weiyan, G., Takahiro, T., Koji, T., Masaru, M., Tsuyoshi, M., and Takahiro, W.: Crystallographic and optical properties of (Cu, Ag)2ZnSnS4 and (Cu, Ag)2ZnSnSe4 solid solutions. Phys. Status Solidi C 12, 700 (2015).Google Scholar
Hages, C.J., Koeper, M.J., and Agrawal, R.: Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying. Sol. Energy Mater. Sol. Cells 145, 342 (2016).CrossRefGoogle Scholar
Gershon, T., Lee, Y.S., Antunez, P., Mankad, R., Singh, S., Bishop, D., Gunawan, O., Hopstaken, M., and Haight, R.: Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1−x)2ZnSnSe4. Adv. Energy Mater. 6, 1502468 (2016).Google Scholar
Su, Z., Tan, J.M.R., Li, X., Zeng, X., and Batabyal, S.K.: Cation substitution of solution‐processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency. Adv. Energy Mater. 5, 1500682 (2015).CrossRefGoogle Scholar
Fu, J., Tian, Q., Zhou, Z., Kou, D., Meng, Y., Zhou, W., and Wu, S.: Improving the performance of solution-processed Cu2ZnSn(S,Se)4 photovoltaic materials by Cd2+ substitution. Chem. Mater. 28, 5821 (2016).CrossRefGoogle Scholar
Paier, J., Asahi, R., Nagoya, A., and Kresse, G.: Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree–Fock density functional theory study. Phys. Rev. B 79, 115126 (2009).CrossRefGoogle Scholar
Lie, S., Rui Tan, J.M., Li, W., Leow, S.W., Tay, Y.F., Bishop, D.M., Gunawan, O., and Wong, L.H.: Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution. J. Mater. Chem. A 6, 1540 (2018).CrossRefGoogle Scholar
Dong, C., Ashebir, G.Y., Qi, J., Chen, J., Wan, Z., Chen, W., and Wang, M.: Solution-processed Cu2FeSnS4 thin films for photovoltaic application. Mater. Lett. 214, 287 (2018).CrossRefGoogle Scholar
Maldar, P.S., Gaikwad, M.A., Mane, A.A., Nikam, S.S., Desai, S.P., Giri, S.D., Sarkar, A., and Moholkar, A.V.: Fabrication of Cu2CoSnS4 thin films by a facile spray pyrolysis for photovoltaic application. Sol. Energy 158, 89 (2017).CrossRefGoogle Scholar
Shin, D., Saparov, B., and Mitzi, D.B.: Defect engineering in multinary earth‐abundant chalcogenide photovoltaic materials. Adv. Energy Mater. 7, 1602366 (2017).CrossRefGoogle Scholar
Shin, D., Saparov, B., Zhu, T., Huhn, W.P., Blum, V., and Mitzi, D.B.: BaCu2Sn(S,Se)4: Earth-Abundant chalcogenides for thin-film photovoltaics. Chem. Mater. 28, 4771 (2016).CrossRefGoogle Scholar
Hong, F., Lin, W., Meng, W., and Yan, Y.: Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. Phys. Chem. Chem. Phys. 18, 4828 (2016).CrossRefGoogle Scholar
Zhu, T., Huhn, W.P., Wessler, G.C., Shin, D., Saparov, B., Mitzi, D.B., and Blum, V.: I2–II–IV–VI4 (I = Cu, Ag; II = Sr, Ba; IV = Ge, Sn; VI = S, Se): Chalcogenides for thin-film photovoltaics. Chem. Mater. 29, 7868 (2017).CrossRefGoogle Scholar
Wang, C., Chen, S., Yang, J-H., Lang, L., Xiang, H-J., Gong, X-G., Walsh, A., and Wei, S-H.: Design of I2–II–IV–VI4 semiconductors through element substitution: The thermodynamic stability limit and chemical trend. Chem. Mater. 26, 3411 (2014).CrossRefGoogle Scholar
Teske, C.L.: Darstellung und Kristallstruktur von Cu2SrSnS4. Z. Anorg. Allg. Chem. 419, 67 (1976).CrossRefGoogle Scholar
Teske, C.R.L. and Vetter, O.: Ergebnisse einer Röntgenstrukturanalyse von Silber‐Barium‐Thiostannat(IV), Ag2BaSnS4. Z. Anorg. Allg. Chem. 427, 200 (1976).CrossRefGoogle Scholar
Ge, J., Koirala, P., Grice, C.R., Roland, P.J., Yu, Y., Tan, X., Ellingson, R.J., Collins, R.W., Yan, Y.: Oxygenated CdS buffer layers enabling high open‐circuit voltages in earth‐abundant Cu2BaSnS4 thin‐film solar cells. Adv. Energy Mater. 7, 1601803 (2017).CrossRefGoogle Scholar
Shin, D., Zhu, T., Huang, X., Gunawan, O., Blum, V., Mitzi, D.B.: Earth‐abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn(S,Se)4 absorber. Adv. Mater. 29, 1606945 (2017).CrossRefGoogle ScholarPubMed
Shin, D., Ngaboyamahina, E., Zhou, Y., Glass, J.T., and Mitzi, D.B.: Synthesis and characterization of an earth-abundant Cu2BaSn(S,Se)4 chalcogenide for photoelectrochemical cell application. J. Phys. Chem. Lett. 7, 4554 (2016).CrossRefGoogle ScholarPubMed
Zhou, Y., Shin, D., Ngaboyamahina, E., Han, Q., Parker, C.B., Mitzi, D.B., and Glass, J.T.: Efficient and stable Pt/TiO2/CdS/Cu2BaSn(S,Se)4 photocathode for water electrolysis applications. ACS Energy Lett. 3, 177 (2018).CrossRefGoogle Scholar