Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T21:29:30.676Z Has data issue: false hasContentIssue false

The atomic structure of growth interfaces in Y–Ba–Cu–O thin films

Published online by Cambridge University Press:  31 January 2011

R. Ramesh
Affiliation:
Bellcore, Red Bank, New Jersey 07701
A. Inam
Affiliation:
Bellcore, Red Bank, New Jersey 07701
D.M. Hwang
Affiliation:
Bellcore, Red Bank, New Jersey 07701
T.S. Ravi
Affiliation:
Bellcore, Red Bank, New Jersey 07701
T. Sands
Affiliation:
Bellcore, Red Bank, New Jersey 07701
X.X. Xi
Affiliation:
Rutgers University, Piscataway, New Jersey 08854
X.D. Wu
Affiliation:
Rutgers University, Piscataway, New Jersey 08854
Q. Li
Affiliation:
Rutgers University, Piscataway, New Jersey 08854
T. Venkatesan
Affiliation:
Rutgers University, Piscataway, New Jersey 08854
R. Kilaas
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, Berkeley, California 94720
Get access

Abstract

We have examined the atomic structure of growth interfaces in thin films of Y–Ba–Cu–O grown on [001] perovskite or cubic substrates. At substrate heater temperatures in the range of 780–820 °C c-axis oriented growth is observed on these substrates. On SrTiO3, the first layer appears to be either a BaO or a CuO2 plane while on LaAlO3 the first layer appears to be a CuO chain layer. The mismatch on the a-b plane is accommodated by the formation of interface dislocations. Defects on the substrate surface propagate as defects in the film. These defects are primarily translational boundaries and in some cases second phases. At lower substrate heater temperatures, i.e., 650–700 °C, a, b-axis growth dominates. Defects and steps on the substrate surface are more detrimental in the growth of a, b-axis oriented films, since they tend to favor the nucleation of c-axis oriented domains. This is ascribed to the ledge mechanism of c-axis film growth, for which the surface steps are good nucleation sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Proc. of SPIE Symposium, Processing of films for high temperature superconducting electronics, edited by Venkatesan, T. (SPIE-P. O. Box 10, Bellingham, WA 98227–0010, October 1989).Google Scholar
2.Ramesh, R., Hwang, D. M., Venkatesan, T., Ravi, T. S., Nazar, L., Inam, A., Wu, X. D., Dutta, B., Thomas, G., Marshall, A. F., and Geballe, T. H., Science 247, 57 (1990).Google Scholar
3.Marshall, A. F., Barton, R. W., Char, K., Kapitulnik, A., Oh, B., Hammond, R. H., and Laderman, S. S., Phys. Rev. B 37, 9353 (1988).CrossRefGoogle Scholar
4.Streiffer, S. K., Lairson, B. M., Eom, C. B., Marshall, A. F., Bravman, J. C., and Geballe, T. H., in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990).Google Scholar
5.Chang, C. C., Wu, X. D., Ramesh, R., Xi, X. X., Ravi, T. S., Venkatesan, T., Hwang, D. M., Muenchausen, R. E., Foltyn, S., and Nogar, N. S., Appl. Phys. Lett. 57, 1814 (1990).CrossRefGoogle Scholar
6.Inam, A., Rogers, C. T., Ramesh, R., Remschnig, K., Farrow, L., Hart, D., Venkatesan, T., and Wilkens, B., Appl. Phys. Lett. 57, 2484 (1990); C. B. Eom, A. F. Marshall, J. M. Triscone, B. Wilkens, S. S. Laderman, and T. H. Geballe, Science 251, 780 (1991).CrossRefGoogle Scholar
7.Venkatesan, T., Chang, C. C., Dijkkamp, D., Ogale, S. B., Chase, E. W., Farrow, L. A., Hwang, D. M., Miceli, P. F., Schwarz, S. A., Tarascon, J. M., Wu, X. D., and Inam, A., J. Appl. Phys. 63, 4591 (1988).Google Scholar
8.Hawley, M., Raistrick, I. D., Beery, J. G., and Houlton, R. J., Science 251, 1587 (1991); M. G. Norton and C. B. Carter, in Laser Ablation for Materials Synthesis, edited by D. C. Paine and J. C. Bravman (Mater. Res. Soc. Symp. Proc. 191, Pittsburgh, PA, 1990).Google Scholar
9.Moeckly, B. H., Russek, S. E., Lathrop, D. K., Buhrman, R. A., Li, J., and Mayer, J. W., Appl. Phys. Lett., in press; Streiffer, S. K., Lairson, B. M., and Bravman, J. C., Appl. Phys. Lett., in press.Google Scholar
10.Venkatesan, T., Chase, E. W., Wu, X. D., Inam, A., Chang, C. C., and Shokoohi, F. K., Appl. Phys. Lett. 53, 243 (1988).Google Scholar
11.Wu, X. D., Inam, A., Venkatesan, T., Chang, C. C., Chase, E. W., Barboux, P., Tarascon, J. M., and Wilkens, B., Appl. Phys. Lett. 54, 754 (1989).CrossRefGoogle Scholar
12.Ramesh, R., Inam, A., Hart, D. L., and Rogers, C. T., Physica C 170, 325 (1990).Google Scholar
13.Frank, F. C. and van der Merwe, J. H., Proc. R. Soc. A 198, 205 (1949); J. H. Matthews, Physics of Thin Films 4, 137 (1967).Google Scholar
14.Tasker, P. W., Surf. Sci. 78, 315 (1979).Google Scholar
15.Ramesh, R., Hwang, D. M., Ravi, T. S., Inam, A., Barner, J. B., Nazar, L., Chan, S. W., Chen, C. Y., Dutta, B., Venkatesan, T., and Wu, X. D., Appl. Phys. Lett. 56, 2243 (1990); R. Ramesh, D. M. Hwang, J. B. Barner, L. Nazar, T. S. Ravi, A. Inam, B. Dutta, X. D. Wu, and T. Venkatesan, J. Mater. Res. 5, 704 (1990); T. S. Ravi, D. M. Hwang, R. Ramesh, S. W. Chan, L. Nazar, C. Y. Chen, A. Inam, and T. Venkatesan, Phys. Rev. B 42, 10141 (1990).CrossRefGoogle Scholar
16.Tietz, L. A., Carter, C. B., Lathrop, D. K., Russek, S. E., Buhrman, R. A., and Michael, J. R., J. Mater. Res. 4, 1072 (1989).Google Scholar
17.Li, Q., Meyer, O., Xi, X. X., Geerk, J., and Linker, G., Appl. Phys. Lett. 55, 310 (1989).Google Scholar
18.Zandbergen, H. W. and Thomas, G., Phys. Status Solidi A 105, 207 (1988).Google Scholar