Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T12:28:19.243Z Has data issue: false hasContentIssue false

Atomic force microscopic studies of oxide thin films on organic self-assembled monolayers

Published online by Cambridge University Press:  31 January 2011

T. P. Niesen*
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstraβe 5, 70569 Stuttgart, Germany
M. R. De Guire
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstraβe 5, 70569 Stuttgart, Germany
J. Bill
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstraβe 5, 70569 Stuttgart, Germany
F. Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstraβe 5, 70569 Stuttgart, Germany
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraβe 92, 70174 Stuttgart, Germany
A. Fischer
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Anorganische Chemie, Faradayweg 4-6, 14195 Berlin, Germany
F. C. Jentoft
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Anorganische Chemie, Faradayweg 4-6, 14195 Berlin, Germany
R. Schlögl
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Anorganische Chemie, Faradayweg 4-6, 14195 Berlin, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The surface morphology of TiO2- and ZrO2-based thin films, deposited from aqueous solution at 70–80 °C onto functionalized organic self-assembled monolayers (SAMs) on silicon has been examined using atomic force microscopy (AFM). The films have been previously shown to consist, respectively, of nanocrystalline TiO2 (anatase) and of nanocrystalline tetragonal ZrO2 with amorphous basic zirconium sulfate. The films exhibit characteristic surface roughnesses on two length scales. Roughness on the nanometer scale appears to be dictated by the size of the crystallites in the film. Roughness on the micron scale is postulated to be related to several factors, including the topography of the SAM and the effects of larger, physisorbed particles or agglomerates. The topographies of the oxide thin films, on both the nanometer and micron scales, are consistent with a particle-attachment mechanism of film growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shin, H., Collins, R. J., De Guire, M. R., Heuer, A. H., and Sukenik, C. N., J. Mater. Res. 10, 692 (1995).CrossRefGoogle Scholar
2.Agarwal, M., De Guire, M.R., and Heuer, A.H., J. Am. Ceram. Soc. 80, 2967 (1997).CrossRefGoogle Scholar
3.Supothina, S. and De Guire, M. R., unpublished results.Google Scholar
4.Agarwal, M., De Guire, M. R., and Heuer, A. H., Appl. Phys. Lett. 71, 891 (1997).CrossRefGoogle Scholar
5.Bunker, B. C., Rieke, P. C., Tarasevich, B.J., Campbell, A. A., Fryxell, G. E., Graff, G. L., Song, L., Liu, J., Virden, J. W., and McVay, G. L., Science 264, 48 (1994).CrossRefGoogle Scholar
6.Rieke, P. C., Marsh, B. D., Wood, L. L., Tarasevich, B. J., Liu, J., Song, L., and Fryxell, G. E., Langmuir 11, 318 (1995).CrossRefGoogle Scholar
7.Baretzky, B., Reinsch, B., Täffner, U., Schneider, G., and Rühle, M., Z. Metallkd. 87, 332 (1996).Google Scholar
8.Yamamoto, H., Okamura, K., Oya, T., Kanashima, T., Okuyuma, M., and Hamakawa, Y., Appl. Surf. Sci. 113/114, 664 (1997).CrossRefGoogle Scholar
9.Anast, M., Jamting, A., Bell, J.M., and Ben-Nissan, B., Thin Solid Films 253, 303 (1994).CrossRefGoogle Scholar
10.Grabar, K. C., Brown, K. R., Keating, C. D., Stranick, S. J., Tang, S-L., and Natan, M. J., Anal. Chem. 69, 471 (1997).CrossRefGoogle Scholar
11. (a)Resch, R., Prohaska, T., Friedbacher, G., Grasserbauer, M., Kanniainen, T., Lindroos, S., Leskelä, M., Niinistö, L., and Broakaert, J. A. C., Fresenius J. Anal. Chem. 353, 772 (1995);CrossRefGoogle Scholar
(b)Kanniainen, T., Lindroos, S., Prohaska, T., Friedbacher, G., Leskelä, M., Grasserbauer, M., and Niinistö, L., J. Mater. Chem. 5, 985 (1995);CrossRefGoogle Scholar
(c)Resch, R., Friedbacher, G., Grasserbauer, M., Kanniainen, T., Lindroos, S., Leskelä, M., and Niinistö, L., Fresenius J. Anal. Chem. 358, 80 (1997);CrossRefGoogle Scholar
(d)Valkonen, M. P., Lindroos, S., Kanniainen, T., Leskelä, M., Resch, R., Friedbacher, G., and Grasserbauer, M., J. Mater. Res. 13, 1688 (1998).CrossRefGoogle Scholar
12.Schwartz, D. K., Steinberg, S., Israelachvili, J., and Zasadzinski, J. A. N., Phys. Rev. Lett. 69, 3354 (1992).CrossRefGoogle Scholar
13.Britt, D. W. and Hlady, V., J. Colloid Interface Sci. 178, 775 (1996).CrossRefGoogle Scholar
14.Fujii, M., Sugisawa, K., Fukada, K., Kato, T., and Seimiya, T., Langmuir 11, 405 (1995).CrossRefGoogle Scholar
15.Bierbaum, K., Grunze, M., Baski, A. A., Chi, L. F., Schrepp, W., and Fuchs, H., Langmuir 11, 2143 (1995).CrossRefGoogle Scholar
16.Carraro, C., Yauw, O. W., Sung, M.M., and Maboudian, R., J. Phys. Chem. B 102, 4441 (1998).CrossRefGoogle Scholar
17.Calistri-Yeh, M., Kramer, E. J., Sharma, R., Zhao, W., Rafailovich, M. H., Sokolov, J., and Brock, J. D., Langmuir 12, 2747 (1996).CrossRefGoogle Scholar
18.Tsukruk, V. V. and Reneker, D. H., Polymer 36, 1791 (1995).CrossRefGoogle Scholar
19.Zhao, X. and Kopelman, R., J. Phys. Chem. 100, 11014 (1996).CrossRefGoogle Scholar
20. (a)Woodward, J. T., Ulman, A., and Schwartz, D. K., Langmuir 12, 3626 (1996);CrossRefGoogle Scholar
(b)Woodward, J. T., Doudevski, I., Sikes, H. D., and Schwartz, D. K., J. Phys. Chem. B 101, 7535 (1997).CrossRefGoogle Scholar
21.Tamada, K., Hara, M., Sasabe, H., and Knoll, W., Langmuir 13, 1558 (1997).CrossRefGoogle Scholar
22.Caldwell, W. B., Campbell, D. J., Chen, K., Herr, B. R., Mirkin, C. A., Malik, A., Durbin, M. K., Dutta, P., and Huang, K. G., J. Am. Chem. Soc. 117, 6071 (1995).CrossRefGoogle Scholar
23.Wang, R., Iyoda, T., Jiang, L., Hashimoto, K., and Fujishima, A., Chem. Lett., 1005 (1996).CrossRefGoogle Scholar
24.Ohno, H., Motomatsu, M., Mizutani, W., and Tomumoto, H., Jpn. J. Appl. Phys. 34, 1381 (1995).CrossRefGoogle Scholar
25.Schwartz, D. K., Curr. Op. Colloid Interface Sci. 3, 131 (1998).CrossRefGoogle Scholar
26.Touzov, I. and Gorman, C. B., J. Phys. Chem. B 101, 5263 (1997).CrossRefGoogle Scholar
27.Lio, A., Morant, C., Ogletree, D. F., and Salmeron, M., J. Phys. Chem. B 101, 4767 (1997).CrossRefGoogle Scholar
28.Doña, J. M. and Herrero, J., J. Electrochem. Soc. 142, 764 (1995).CrossRefGoogle Scholar
29. (a)Guillen, C., Martinez, M. A., Rodriguez, A., Herrero, J., and Gutierrez, M. T., Prog. Photovoltaics: Res. Appl. 4, 439 (1996);3.0.CO;2-R>CrossRefGoogle Scholar
(b)Doña, J. M. and Herrero, J., J. Electrochem. Soc. 144, 4081 (1997).CrossRefGoogle Scholar
30.Breen, M. L., Woodward, J. T., Schwarz, D. K., and Apblett, A. W., Chem. Mater. 10, 710 (1998).CrossRefGoogle Scholar
31. (a)Kotov, N. A., Dekany, I., and Fendler, J. H., J. Phys. Chem. 99, 13065 (1995);CrossRefGoogle Scholar
(b)Fendler, J. H., Chem. Mater. 8, 1616 (1996).CrossRefGoogle Scholar
32.Meldrum, F. C., Flath, J., and Knoll, W., Langmuir 13, 2033 (1997).CrossRefGoogle Scholar
33.Huang, D., Xiao, Z-D., Gu, J-H., Huang, N-P., and Yuan, C-W., Thin Solid Films 305, 110 (1997).CrossRefGoogle Scholar
34. (a)Balachander, N. and Sukenik, C. N., Tetrahedron Lett. 29, 5593 (1988);CrossRefGoogle Scholar
(b)Balachander, N. and Sukenik, C. N., Langmuir 6, 1621 (1990);CrossRefGoogle Scholar
(c)Collins, R.J. and Sukenik, C. N., Langmuir 11, 2322 (1995).CrossRefGoogle Scholar
35.Shin, H., Agarwal, M., De Guire, M. R., and Heuer, A.H., Acta Mater. 46, 801 (1998).CrossRefGoogle Scholar
36.Liu, Y., Wang, A., and Claus, R., J. Phys. Chem. B 101, 1385 (1997).CrossRefGoogle Scholar
37.Hu, M., Schempp, S., and De Guire, M. R., unpublished results.Google Scholar
38.Supothina, S., Ph.D. Dissertation, Case Western Reserve University, January 1999.Google Scholar
39.Chiang, Y. M., Silverman, L. E., French, R. H., and Cannon, R. M., J. Am. Ceram. Soc. 77, 1143 (1994).CrossRefGoogle Scholar
40.Fischer, A. and Jentoft, F. C., unpublished results.Google Scholar
41.Fischer, A., Jentoft, F. C., Weinberg, G., Schlögl, R., Niesen, T.P., Bill, J., Aldinger, F., De Guire, M. R., and Rühle, M., unpublished results.Google Scholar
42.Shin, H., Agarwal, M., De Guire, M. R., and Heuer, A. H., J. Am. Ceram. Soc. 79, 1975 (1996).CrossRefGoogle Scholar