Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-10-03T03:10:30.073Z Has data issue: false hasContentIssue false

Additive controlled crystallization of barium titanate powders and their application for thin-film ceramic production: Part II. From nano-sized powders to ceramic thin films

Published online by Cambridge University Press:  31 January 2011

B. Grohe
Affiliation:
Max Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, FRG
G. Miehe
Affiliation:
Technische Universität Darmstadt, Fachbereich Materialwissenschaft, Petersenstraβe 23, D-64287 Darmstadt, FRG
G. Wegner*
Affiliation:
Max Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, FRG
*
a)Address all correspondence to this author.
Get access

Abstract

Nano-sized barium titanate (BaTiO3) particles prepared by the sol-to-precipitate method in aqueous/organic medium served to obtain thin-layer ceramic films of the tetragonal electroactive phase. Poly(methacrylic acid) works efficiently to process the suspensions and to obtain green films. Sintering the green films under O2–Ar atmosphere gave thin-layered ceramics of a thickness of 0.5–1.0 mm with a dielectric constant of 3750 at 20 °C (1 kHz).

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grohe, B., Miehe, G., and Wegner, G., J. Mater. Res. (in press).Google Scholar
2.Parfitt, G.D., Dispersions of Powders in Liquids, 3rd ed. (Applied Science Publishers, London, United Kingdom, 1981), pp. 150.Google Scholar
3.Napper, D.H., Polymeric Stabilisation of Colloidale Dispersions (Academic Press, London, United Kingdom, 1983).Google Scholar
4.Spoor, H., Angew. Makromol. Chem. 123, 1 (1984).CrossRefGoogle Scholar
5.Nahass, P., Pober, R.L., Rhine, W.E., Robbins, W.L., and Bowen, H.K., J. Am. Ceram. Soc. 75, 2373 (1992).CrossRefGoogle Scholar
6.de Laat, A.W.M. and Derks, W.P.T., Colloids Surf., A 71, 147 (1993).CrossRefGoogle Scholar
7.de Laat, A.W.M., de Bruijn, A.W., and van den Heuvel, G.L.T., Colloids Surf., A 82, 99 (1994).CrossRefGoogle Scholar
8.Hanson, F.K., ACS Symp. Ser. 472, 167 (1991).Google Scholar
9.Hirata, Y., Nishimoto, A., and Ishihara, Y., J. Ceram. Soc. Jpn. 100, 972 (1992).Google Scholar
10.Kulcsar, F., J. Am. Ceram. Soc. 39, 13 (1956).CrossRefGoogle Scholar
11.Delfrate, M.A., Lemaitre, J., Buscaglia, V., Leoni, M., and Nanni, P., J. Eur. Ceram. Soc. 16, 975 (1996).CrossRefGoogle Scholar
12.Blanco-López, M.C., Rand, B., and Riley, F.L., J. Eur. Ceram. Soc. 17, 281 (1997).CrossRefGoogle Scholar
13.Chen, Z-C., Ring, T.A., and Lemaitre, J., J. Am. Ceram. Soc. 75, 3201 (1992).CrossRefGoogle Scholar
14.Her, Y-S. and Matijević, E., J. Mater. Res. 12, 3106 (1995).CrossRefGoogle Scholar
15.Harkulich, T.M., Magder, J., Vukasovich, M.S., and Lockhart, R.J., J. Am. Ceram. Soc. 49, 295 (1966).CrossRefGoogle Scholar
16.Krischner, H., Einführung in die Röntgenfeinstrukturanalyse, 4th ed. (Friedr. Vieweg & Sohn, Braunschweig, Germany, 1990), pp. 136143.CrossRefGoogle Scholar
17.Rao, C.R.N. and Rao, K.J., Phase Transitions in Solids, 1st ed. (McGraw-Hill Inc. Intern., London, United Kingdom, 1978), pp. 3843.Google Scholar
18.Takeuchi, T., Tabuchi, M., Ado, K., Honjo, K., and Nakamura, O., J. Mater. Sci. 32, 4053 (1997).CrossRefGoogle Scholar
19.Warren, W.L., Pike, G.E., Vanheusden, K., Dimos, D., and Tuttle, B.A., J. Appl. Phys. 79, 9250 (1996).CrossRefGoogle Scholar