Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T14:58:09.656Z Has data issue: false hasContentIssue false

Thermochemistry of rare-earth orthophosphates

Published online by Cambridge University Press:  31 January 2011

S. V. Ushakov
Affiliation:
Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616–8779
K. B. Helean
Affiliation:
Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616–8779
A. Navrotsky*
Affiliation:
Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616–8779
L. A. Boatner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6056
*
a)Address correspondence to this author.
Get access

Abstract

The enthalpies of formation for the compounds (RE3+)PO4, (where RE = Sc, Y, La–Nd, Sm–Lu) were determined by oxide-melt solution calorimetry. Calorimetric measurements were performed in a Calvet-type twin microcalorimeter in sodium molybdate (3Na2O · 4MoO3) and lead borate (2PbO · 2B2O3) solvents at 975 K. The experiments were carried out using both powdered single crystals grown by a flux technique and powders synthesized by precipitation. Formation enthalpies were derived from the drop-solution enthalpies for (RE)PO4, RE oxides, and P2O5. Enthalpies of formation for the (RE)PO4 compounds with respect to the oxides at 298 K become more negative with increasing RE3+ ionic radius; i.e., in going from ScPO4 (−209.8 ± 1.0 kJ/mol), to LuPO4 (−263.9 ± 1.9 kJ/mol), to LaPO4 (−321.4 ± 1.6 kJ/mol). From structural considerations, a similar trend is expected for the isostructural RE vanadates and arsenates, as well as for the tetravalent actinide orthosilicates.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Averbuch-Pouchot, M.T. and Durif, A., Topics in Phosphate Chemistry (World Scientific, Singapore, 1996), Chapter 5.CrossRefGoogle Scholar
2Boatner, L.A., Beall, G.W., Abraham, M.M., Finch, C.B., Huray, P.G., and Rappaz, M., in Sci. Basis for Nucl. Waste Manage. 2, (Mater. Res. Soc. Symp. Proc., Pittsburgh, PA, 1980), p. 289.CrossRefGoogle Scholar
3Boatner, L.A. and Sales, B.C., in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R.C. (North-Holland, New York, 1988).Google Scholar
4Sasoh, M., Miyamoto, S., Toyohara, M., and Wada, M., in Scientific Basis for Nuclear Waste Management XX, edited by Gray, W.J. and Triay, I.R. (Mater. Res. Soc. Symp. Proc. 465, Pittsburgh, PA, 1997), p. 623.Google Scholar
5Kleykamp, N.J., Nucl. Mater. 275, 1 (1999).CrossRefGoogle Scholar
6Matzke, Hj., Rondinella, V.V., and Wiss, T., J. Nucl. Mater. 274, 47 (1999).CrossRefGoogle Scholar
7Bakker, K., Hein, H., Konings, R.J.M., Van der Laan, R.R., Matzke, H., and Van Vlaanderen, P.J., Nucl. Mater. 252, 228 (1998).CrossRefGoogle Scholar
8Marshall, D.B., Morgan, P.E., and Housley, R.M., J. Am. Ceram. Soc. 80, 1677 (1997).CrossRefGoogle Scholar
9Mawdsley, J.R., Kovar, D., and Halloran, J.W., J. Am. Ceram. Soc. 83, 802 (2000).CrossRefGoogle Scholar
10Moses, W.W., Weber, M.J., Derezno, S.E., Perry, D., Berdahl, P., and Boatner, L.A., IEEE Trans. Nucl. Sci. 45, 462 (1998).CrossRefGoogle Scholar
11Wojtowicz, A.J., Wisniewski, D., Lempicki, A., and Boatner, L.A., Radiat. Eff.Defects Solids 135, 305 (1995).CrossRefGoogle Scholar
12Wojtowicz, A.J., Wisniewski, D., Lempicki, A., and Boatner, L.A., in Scintillation and Phosphor Materials, edited by Weber, M.J., Lecoq, P., Ruchti, R.C., Woody, C., Yen, W.M., and Zhu, R-Y. (Mater. Res. Soc. Symp. Proc. 348, Pittsburgh, PA, 1994), pp. 123129.Google Scholar
13Lempicki, A., Berman, E., Wojtowicz, A.J., Balcerzyk, M., and Boatner, L.A., IEEE Trans. Nucl. Sci. 40, 384 (1993).CrossRefGoogle Scholar
14Allison, S.W., Boatner, L.A., and Gillies, G.T., Appl. Opt. 25, 5624 (1995).CrossRefGoogle Scholar
15Rapaport, A., David, V., Bass, M., Deka, C., and Boatner, L.A., J. Lumin. 85, 155 (1999).CrossRefGoogle Scholar
16Rapaport, A., Moteau, O., Bass, M., Boatner, L.A., and Deka, C., J. Opt. Soc. Am. B 16, 911 (1999).CrossRefGoogle Scholar
17Jarosewich, E. and Boatner, L.A., Geostandards Newsletter 15, 397 (1991).CrossRefGoogle Scholar
18Loong, C.K., Loewenhaupt, M., Nipko, J.C., Braden, M., Reichart, W., and Boatner, L.A., Phys. Rev. B 60, R12549 (1999).CrossRefGoogle Scholar
19Nipko, J.C., Loong, C.K., Loewenhaupt, M., Braden, M., Reichart, W., and Boatner, L.A., Phys. Rev. B 56, 11584 (1997).CrossRefGoogle Scholar
20Rat'kovskii, I.A., Butylin, B.A., and Novikov, G.I., Dokl. Akad. Nauk Beloruss. SSR 17, 232 (1973).Google Scholar
21Ratkovskii, I.A., Ashuiko, V.A., Orlovskiy, V.P., Halikov, B.S., and Novikov, G.I., Dokl. Akad. Nauk SSSR 279, 1413 (1974).Google Scholar
22Ratkovskii, I.A., Lavrov, A.V., Ashuiko, V.A., Orlovskiy, V.P., and Beliaevskaya, T.V., Dokl. Akad. Nauk SSSR 222, 1148 (1975).Google Scholar
23Ratkovskii, I.A., Ashuiko, V.A., Orlovskii, V.P., Lavrov, A.V., and Khalikov, B.S., Izv. Akad. Nauk SSSR Neorg. Mater. 12, 725 (1976).Google Scholar
24Ashuiko, V.A., Ratkovskii, I.A., Orlovskiy, V.P., Beliaevskaya, T.V., and Fakeev, A.A., Zh. Fiz. Khim. 49, 1856 (1975).Google Scholar
25Lopatin, I.S., Semenov, G.A., and Selevich, A.F., Phosphorus Res. Bull. 10, 199 (1999).CrossRefGoogle Scholar
26Serra, J.J., Coutures, J., and Rouanet, A., High Temp. High Pressures 8, 337 (1976).Google Scholar
27Rouanet, A., Serra, J.J., Allaf, K., and Orlovskii, V.P., Izv. Akad. Nauk SSSR Neorg. Mater. 17, 104 (1981).Google Scholar
28Kizilyalli, M. and Welch, A.J.E., J. Appl. Crystallogr. 9, 413 (1976).CrossRefGoogle Scholar
29Inoue, M., Nakamura, T., Otsu, H., Kominami, H., and Inui, T., Nip-pon Kagaku Kaishi 5, 612 (1993).CrossRefGoogle Scholar
30Hikichi, V., Yu, C.F., Miyamoto, V., and Okada, S., J. Alloys Compd. 192, 102 (1993).CrossRefGoogle Scholar
31Ni, Y., Hughes, J.M., and Mariano, A.N., Am. Miner. 80, 21 (1995).CrossRefGoogle Scholar
32Miyawaki, R., Nakai, I., in Handbook on the Physics and Chemis-try of Rare Earths, edited by Gschneidner, K.A. and Eyring, L., (North-Holland, Amsterdam, 1993), Vol. 16, p. 249.Google Scholar
33Miyawaki, R. and Nakai, I., in Rare Earth Minerals: Chemistry, Origin and Ore Deposits, edited by Jones, A.P., Wall, F., and Williams, C.T., (Miner. Soc. Ser. 7, Chapman and Hall, London, 1996), p. 21.Google Scholar
34Beall, G.W., Boatner, L.A., Mullica, D.F., and Milligan, W.O., J. Inorg. Nucl. Chem. 43, 101 (1981).CrossRefGoogle Scholar
35Mullica, D.F., DavidGrossie, A. Grossie, A., and Boatner, L.A., Inorg. Chim. Acta 109, 105 (1985).CrossRefGoogle Scholar
36Mullica, D.F., DavidGrossie, A. Grossie, A., and Boatner, L.A., J. Solid State Chem. 58, 71 (1985).CrossRefGoogle Scholar
37Shannon, R.D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
38Glushko, P. and Medvedev, V.A., Termicheskie Konstanty Veshestv (Akademia Nauk, Moscow, 1978).Google Scholar
39Chakoumakos, B.C., Abraham, M.M., and Boatner, L.A., J. Solid State Chem. 109, 197 (1994).CrossRefGoogle Scholar
40Mullica, D.F., Sappenfield, E.L., Abraham, M.M., Chakoumakos, B.C., and Boatner, L.A., Inorg. Chim. Acta 248, 85 (1996).CrossRefGoogle Scholar
41Volkov, F.Yu., Radiochemistry (Moscow) 41, 168 (1999).Google Scholar
42Bamberger, C.E., Haire, R.G., Hellwege, H.E., and Begun, G.M., J. Less-Common Met. 97, 349 (1984).CrossRefGoogle Scholar
43Keller, C., in Lanthanide/Actinide Chemistry, edited by Gould, R.F. (Adv. Chem. Ser. 71, American Chemical Society, Washington, DC, 1967), p. 228.CrossRefGoogle Scholar
44Keller, C., Nucleonik 5, 41 (1963).Google Scholar
45Navrotsky, A., Phys. Chem. Miner. 2, 89 (1977).CrossRefGoogle Scholar
46Navrotsky, A., Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
47 JADE, Materials Data, Inc., Livermore, CA, 1997.Google Scholar
48 NBS Certificate: Standard Reference Material 640b, 1987.Google Scholar
49 NIST Certificate: Standard Reference Material 660, 1989.Google Scholar
50Feigelson, R.S., J. Am. Ceram. Soc. 47, 257 (1964).CrossRefGoogle Scholar
51Rappaz, M., Boatner, L.A., and Abraham, M.M., J. Chem. Phys. 73, 1095 (1980).CrossRefGoogle Scholar
52Boyd, R.F., Finger, L.F., and Chayes, F., Carnegie Inst. of Wash-ington Yearbook 67, 210 (1969).Google Scholar
53Drake, M.J. and Weill, D.F., Chem. Geol. 10, 179 (1972).CrossRefGoogle Scholar
54Abraham, M.M., Boatner, L.A., Quinby, T.S., Thomas, D.K., and Rappaz, M., Radiat. Waste Management 1, 181 (1980).Google Scholar
55Hikichi, Y., Sasaki, T., Murayama, K., Nomura, T., and Miyamoto, M., J. Am. Ceram. Soc. 72, 1073 (1989).CrossRefGoogle Scholar
56Mooney, R.C.L., Acta Crystallogr. 3, 337 (1950).CrossRefGoogle Scholar
57Pepin, J.G. and Vance, E.R., J. Inorg. Nucl. Chem. 43, 2807 (1981).CrossRefGoogle Scholar
58 PDF-2 Database, JCPDS-ICDD, 1999.Google Scholar
59Haire, R.G. and Eyring, L., in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, K.A. Jr., Eyring, L., Choppin, G.R., and Lander, G.H. (North-Holland, Amsterdam, 1994) p. 413.Google Scholar
60Navrotsky, A., J. Therm. Anal. Calorim. 57, 653 (1999).CrossRefGoogle Scholar
61 NBS Certificate: Standard Reference Material 720, April 1982.Google Scholar
62Robie, R.A. and Hemingway, B.S., Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures (U.S. Geol. Surv. Bull. 2131, Washington, DC, 1995).Google Scholar
63Navrotsky, A., Rapp, R.P., Smelik, E., Burnley, P., Circone, S., Chai, L., Bose, K., and Westrich, H.R., Am. Miner. 79, 1099 (1994).Google Scholar
64Putnam, R.L., Navrotsky, A., Cordfunke, E.H.P., and Huntelaar, M.E., J. Chem. Thermodyn. 32, 911 (2000).CrossRefGoogle Scholar
65Bularzik, J., Navrotsky, A., DiCarlo, J., Bringley, J., Scott, B., and Trail, S., J. Solid. State Chem. 93, 418 (1991).CrossRefGoogle Scholar
66Zhou, Z. and Navrotsky, A., J. Mater. Res. 7, 2920 (1992).CrossRefGoogle Scholar
67Takayama-Muromachi, E. and Navrotsky, A., J. Solid State Chem. 106, 349 (1993).CrossRefGoogle Scholar
68Robie, R.A., Hemingway, B.S., and Fisher, J.R., Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures (U.S. Geol. Surv. Bull. 1452, Washington, DC, 1979).Google Scholar
69Navrotsky, A., Ceram. Trans. (2001, in press).Google Scholar
70Mumpton, F.A., and Roy, R., Geochim. Cosmochim. Acta 21, 217 (1961).CrossRefGoogle Scholar
71Ushakov, S.V., Gong, W., Yagovkina, M.M., Helean, K.B., Lutze, W., and Ewing, R.C., Ceram. Trans. 93, 357 (1999).Google Scholar
72Putnam, R.L., Gallegos, U.F., Navrotsky, A., Helean, K.B., Ushakov, S.V., Woodfield, B.F., and J. Boerio-Goates, Ceram. Trans. (2001, in press).Google Scholar
73Marinova, L.A., Glibin, V.P., and Volkov, A.I., Rassh. Tezisi. Dokl. Tbilissi Meznierba 71, (1973).Google Scholar
74Almendra, E.R. and Ogasawara, T., Congr. Anu. -Assoc. Bras. Metal Mater. 50, 1 (1996).Google Scholar
75Hikichi, Y. and Nomura, V.J., J. Am. Ceram. Soc. 70, C252 (1987); Hikichi, Y., Ota, T., Daimon, K., and Hattori, V., J. Am. Ceram. Soc. 81, 2216 (1998).Google Scholar
76Gschneidner, K.A. Jr., J. Less-Common Metals 17, 13 (1969).CrossRefGoogle Scholar
77Marakushev, A.A. and Stolyarova, T.A., Dokl. Akad. Nauk 363, 811 (1998).Google Scholar
78Molodetsky, I., Ph.D. Thesis, Princeton University, Princeton, NJ, 1999.Google Scholar
79Morss, L.R., in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, K.A., , Eyring Jr., Choppin, G.R., and Lander, G.H. (North-Holland, Amsterdam, 1994), p. 239.Google Scholar
80Marinova, L.A. and Yaglov, V.N., Zh. Fiz. Khim. 50, 802 (1976).Google Scholar
81Balducci, G., De Maria, G., Gigli, G., and Guido, M., Adv. Mass Spectrom. 7A, 651 (1978).Google Scholar
82Firsching, F.H. and Brune, S.N., J. Chem. Eng. Data 36, 93 (1991).CrossRefGoogle Scholar
83Yaglov, V.N., Novikov, G.I., Sharap, L.A., K.KLefarova, h., and Marinova, L.S., Zh. Fiz. Khim. 48, 769 (1974).Google Scholar