Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T13:23:58.105Z Has data issue: false hasContentIssue false

Temperature-dependent ferroelectric properties of (Pb0.75La0.25)TiO3 thin films

Published online by Cambridge University Press:  03 March 2011

S.T. Zhang*
Affiliation:
Department of Materials Science and Engineering & National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, People’s Republic of China
J.P. Li
Affiliation:
Department of Materials Science and Engineering & National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, People’s Republic of China
Y.F. Chen
Affiliation:
Department of Materials Science and Engineering & National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, People’s Republic of China
Z.G. Liu
Affiliation:
Department of Materials Science and Engineering & National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, People’s Republic of China
N.B. Ming
Affiliation:
Department of Materials Science and Engineering & National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, People’s Republic of China
*
a)Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

Polycrystalline (Pb0.75La0.25)TiO3 (PLT25) thin films have been fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. The room-temperature structures and dielectric properties are studied by x-ray diffraction, scanning electron microscopy, and HP4294A impedance/phase analyzer. The temperature-dependent ferroelectric properties are systematically investigated by using a RT66A ferroelectric tester combined with a temperature-controllable vacuum chamber. For well-saturated hysteresis loops, with the temperature decrease from 295 to 97 K, the coercive field (Ec) and remanent polarization (Pr) increase and the saturated polarization (Ps) is almost temperature-independent. However, this is not the case for the unsaturated hysteresis loops. Temperature-dependent fatigue-resistance of the PLT25 films is also experimentally established: after 2.22 × 109 switching cycles, the nonvolatile polarizationdecreases 38% when measured at room-temperature and it decreases 15% at 97 K. The nature and population of point defects and their effects on the subtle variations of the Ec, Ps, Pr, and fatigue-resistance against temperature are discussed in detail.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Okyama, M. and Hamakawa, Y.: Ferroelectrics 63, 243 (1985).Google Scholar
2Sinharoy, S., Buhay, H., Lampe, D.R. and Francombe, M.H.: J. Vac. Sci. Technol. A 10, 1554 (1992).Google Scholar
3Fox, G.R., Chu, F. and Davenport, T.: J. Vac. Sci. Technol. B 19, 1967 (2001).CrossRefGoogle Scholar
4Funakubo, H., Watanabe, T., Kojima, T., Sakai, T., Noguchi, Y., Miyayama, M., Osada, M., Kakihana, M. and Saito, K.: J. Cryst. Growth 248, 180 (2003).CrossRefGoogle Scholar
5Parker, L. and Tasch, A.: IEEE Circuits Devices Mag. 6, 17 (1990).CrossRefGoogle Scholar
6Kim, B.G., Cho, S.M., Kim, T.Y. and Jang, H.M.: Phys. Rev. Lett. 86, 3404 (2001).Google Scholar
7Adachi, H., Mitsuyu, T., Yamazaki, O. and Wasa, K.: J. Appl. Phys. 60, 736 (1986).Google Scholar
8Takayama, R., Tomita, Y., Ijima, K. and Ueda, I.: J. Appl. Phys. 63, 5868 (1988).CrossRefGoogle Scholar
9Nagao, N., Takeuchi, T., and Ijima, K., Jpn. J. Appl. Phys. 30, 4065 (1993).CrossRefGoogle Scholar
10Lee, S.J., Kang, K.Y., Han, S.K., Jang, M.S., Chae, B.G., Yang, Y.S. and Kim, S.H.: Appl. Phys. Lett. 72, 299 (1998).Google Scholar
11Bhaskar, S., Majumder, S.B. and Katiyar, R.S.: Appl. Phys. Lett. 80, 3997 (2002).CrossRefGoogle Scholar
12Kim, T.Y., Jang, H.M. and Cho, S.M.: J. Appl. Phys. 91,336 (2002).Google Scholar
13Kang, Y.M. and Balk, S.: J. Appl. Phys. 82, 2532 (1997).Google Scholar
14Bhaskar, S., Majumder, S.B., Dobal, P.S., Katiyar, R.S. and Krupanidhi, S.B.: J. Appl. Phys. 89, 5637 (2001).CrossRefGoogle Scholar
15Tseng, Y.K., Liu, K.S., Jiang, J.D. and Lin, I.N.: Appl. Phys. Lett. 72, 3285 (1998).Google Scholar
16Mihara, T., Watanabe, H. and Araujo, C.A.: Jpn. J. Appl. Phys. 33, 3996 (1994).Google Scholar
17Wu, D., Li, A.D., Lin, H.Q., Yu, T., Liu, Z.G. and Ming, N.B.: J. Mater. Res. 16, 1325 (2001).CrossRefGoogle Scholar
18Kim, T.Y. and Jang, H.M.: Appl. Phys. Lett. 77, 3824 (2000).CrossRefGoogle Scholar
19Desu, S.B.: Phys. Status Solidi 151, 467 (1995).CrossRefGoogle Scholar
20Brennan, C.: Ferroelectrics 150, 199 (1993).Google Scholar
21Dawber, M. and Scott, J.F.: Appl. Phys. Lett. 76,1060 (2000).Google Scholar
22Hauke, T., Mueller, V., Beige, H. and Fousek, J.: Phys. Rev. B 57, 10424 (1998).CrossRefGoogle Scholar
23Yang, P.X., Carroll, D.L. and Ballato, J.: Appl. Phys. Lett. 81, 4583 (2002).CrossRefGoogle Scholar
24Dimos, D., Al-Shareef, H.N., Warren, W.L. and Tuttule, B.A.: J. Appl. Phys. 80, 1682 (1996).CrossRefGoogle Scholar
25 RT66A standardized ferroelectric test system V2.1 operating manual Radiant. Tech., USA, 1995.Google Scholar