Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T12:21:38.863Z Has data issue: false hasContentIssue false

Synthesis of bulk polycrystalline indium nitride at subatmospheric pressures

Published online by Cambridge University Press:  31 January 2011

Jeffrey S. Dyck
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106–7079
Kathleen Kash*
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106–7079
Cliff C. Hayman
Affiliation:
Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106–7217
Alberto Argoitia
Affiliation:
Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106–7217
Michael T. Grossner
Affiliation:
Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106–7217
John C. Angus
Affiliation:
Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106–7217
Wei-Lie Zhou
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204
*
a)Address all correspondence to this author.
Get access

Abstract

Polycrystalline, wurtzitic indium nitride was synthesized by saturating indium with nitrogen from microwave plasma sources. The structure was confirmed by x-ray diffraction, electron diffraction, and elemental analysis. Two types of growth were observed: (i) dendritic crystals on the original melt surface, and (ii) hexagonal platelets adjacent to the In metal source on the upper edge of the crucible. The method does not involve a foreign substrate to initiate growth and is a potential alternative to the high-pressure techniques normally associated with bulk growth of indium nitride. The lattice parameters were a = 3.5366 ± 0.0005 Å and c = 5.7009 ± 0.0005 Å, with c/a = 1.612 ± 0.0005.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bedair, S. M., in Gallium Nitride (GaN) I, edited by Pankove, J. I. and Moustakas, T. D., Semiconductors and Semimetals Series (Academic Press, San Diego, CA, 1998), Vol. 50, p. 128 and references therein.Google Scholar
2.Harrison, W. A., Electronic Structure and the Properties of Solids (W. H. Freeman and Co., San Francisco, CA, 1980), p. 176.Google Scholar
3.Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys. 76, 8189 (1994).CrossRefGoogle Scholar
4.Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).CrossRefGoogle Scholar
5.Grzegory, I., Jun, J., Krukowski, S., Perlin, P., and Porowski, S., Jpn. J. Appl. Phys. 32, Suppl. 32–1, 343 (1993).CrossRefGoogle Scholar
6.Argoitia, A., Hayman, C. C., Angus, J. C., Wang, L., Dyck, J. S., and Kash, K., Appl. Phys. Lett. 70, 179 (1997).CrossRefGoogle Scholar
7.Argoitia, A., Hayman, C. C., Angus, J. C., Wang, L., Dyck, J. S., and Kash, K., in III-V Nitrides, edited by Ponce, F. A., Moustakas, T. D., Akasaki, I., and Monemar, B. A. (Mater. Res. Soc. Symp. Proc. 449, Pittsburgh, PA, 1997), pp. 4752.Google Scholar
8.Angus, J. C., Hayman, C.C., Evans, E. A., and Argoitia, A., Proc. III-V Nitride Materials and Processes II, edited by Abernathy, C. R., Brown, W.D., Buckley, D.N., Dismukes, J.P., Kamp, M., Moustakas, T.D., Pearton, S. J., and Ren, F. (Electrochem. Soc. Symp. Proc. 97–34, Pennington, NJ, 1998), pp. 201208.Google Scholar
9.Angus, J. C., Argoitia, A., Hayman, C. C., Wang, L., Dyck, J. S., and Kash, K., in Gallium Nitride and Related Materials II, edited by Abernathy, C.R., Amano, H., and Zolper, J. C. (Mater. Res. Soc. Symp. Proc. 468, Pittsburgh, PA, 1997), pp. 149154.Google Scholar
10.Dyck, J.S., Kash, K., Kim, K., Lambrecht, W.R.L, Hayman, C.C., Argoitia, A., Grossner, M.T., Zhou, W. L., and Angus, J. C., in Nitride Semiconductors, edited by Ponce, F. A., DenBaars, S.P., Meyer, B.K., Nakamura, S., and Strite, S. (Mater. Res. Soc. Symp. Proc. 482, Pittsburgh, PA, 1998), pp. 549554.Google Scholar
11.Krukowski, S., Witek, A., Adamczyk, J., Jun, J., Bockowski, M., Grzegory, I., Lucznik, B., Nowak, G., Wroblewski, M., Presz, A., Gierlotka, S., Stelmach, S., Palosz, B., Porowski, S., and Zinn, P., J. Phys. Chem. Solids 59, 289 (1998).CrossRefGoogle Scholar
12.Cohen, M.U., Rev. Sci. Instrum. 6, 68 (1935); 7, 155 (1936).CrossRefGoogle Scholar
13.Smith, G.S. and Snyder, R. L., J. Appl. Cryst. 12, 60 (1979).CrossRefGoogle Scholar
14.Kim, K., Lambrecht, W.R.L, and Segall, B., Phys. Rev. B 53, 16310 (1996); Phys. Rev. B 56, 7018 (1997).CrossRefGoogle Scholar
15.Schultz, H. and Thiemann, K. H., Solid State Commun. 23, 815 (1977).CrossRefGoogle Scholar
16.Hahn, H. and Juza, R., Z. anorg. allgem. Chem. 244, 111 (1940).CrossRefGoogle Scholar
17.Newman, N., in III-V Nitride Materials and Processes, edited by Moustakas, T.D., Dismukes, J.P., and Pearton, S.J. (Electrochem. Soc. Symp. Proc. 96–11, Pennington, NJ, 1996), pp. 119.Google Scholar
18.Newman, N., J. Cryst. Growth 178, 102 (1997).CrossRefGoogle Scholar
19.Logan, R.A. and Thurmond, C.D., J. Electrochem. Soc. 119, 1727 (1972).CrossRefGoogle Scholar
20.Madar, R., Jacob, G., Hallais, J., and Fruchart, R., J. Cryst. Growth 31, 197 (1975).CrossRefGoogle Scholar
21.Elwell, D., Feigelson, R. S., Simkins, M.M., and Tiller, W.A., J. Cryst. Growth 66, 45 (1984).CrossRefGoogle Scholar
22.Toy, C. and Scott, W.D., J. Mater. Sci. 32, 3243 (1997).CrossRefGoogle Scholar
23.Karpinski, J. and Porowski, S., J. Cryst. Growth 66, 11 (1984);CrossRefGoogle Scholar
Karpinsky, J., Jun, J., and Porowski, S., J. Cryst. Growth 66, 1 (1984).CrossRefGoogle Scholar
24.Porowski, S., Jun, J., Perlin, P., Grzegory, I., Teisseyre, H., and Suski, T., Inst. Phys. Conf. Series, No. 137, Chapter 4 (5th Conf. on SiC and Related Materials, Washington, DC, 1993), p. 369.Google Scholar
25.Perlin, P., Gorczyca, I., Christensen, N. E., Grzegory, I., Teisseyre, H., and Suski, T., Phys. Rev. B 45, 13307 (1992).CrossRefGoogle Scholar
26.Properties of Group III Nitrides, edited by Edgar, J.H., EMIS Datareviews Series, No. 11, INSPEC (The Institution of Electrical Engineers, London, U.K., 1994).Google Scholar
27.Porowski, S. and Grzegory, I., in Properties of Group III Nitrides, edited by Edgar, J. H., EMIS Datareviews Series, No. 11, INSPEC (The Institution of Electrical Engineers, London, U.K., 1994), p. 82.Google Scholar
28.McChesney, J. B., Bridenbaugh, P. M., and O'Connor, P. B., Mater. Res. Bull. 5, 783 (1970).CrossRefGoogle Scholar
29.Krukowski, S., Romanowski, Z., Grzegory, I., and Porowski, S., in III-V Nitride Materials and Processes II, edited by Abernathy, C. R., Brown, W.D., Buckley, D.N., Dismukes, J.P., Kamp, M., Moustakas, T. D., Pearton, S. J., and Ren, F. (Electrochem. Soc. Symp. Proc. 97–34, Paris, 1997), pp. 189200; J. Cryst. Growth (1998, in press).Google Scholar
30.Juza, R. and Hahn, H., Z. anorg. allgem. Chem. 239, 282 (1938).CrossRefGoogle Scholar
31.Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys. 46, 3432 (1975).CrossRefGoogle Scholar
32.Pichugin, I. G. and Tlachala, M., Izv. Akad. Nauk SSSR Neorg. Mater. (USSR) 14, 175 (1978).Google Scholar
33.Tansley, T.L. and Foley, C. P., J. Appl. Phys. 59, 3241 (1986).CrossRefGoogle Scholar
34.Wakahara, A. and Yoshida, A., Appl. Phys. Lett. 54, 709 (1989).CrossRefGoogle Scholar
35.Kubota, K., Kobayashi, Y., and Fujimoto, K., J. Appl. Phys. 66, 2984 (1989).CrossRefGoogle Scholar
36.Strite, S., Chandrasekhar, D., Smith, D.J., Sariel, J., Chen, H., Teraguchi, N., and Morkoç, H., J. Cryst. Growth 127, 204 (1993).CrossRefGoogle Scholar
37.Edgar, J. H., Wei, C.H., Smith, D. T., Kistenmacher, T. J., and Bryden, W. A., J. Mater. Sci.–Mater. in Elect. 8, 307 (1997).CrossRefGoogle Scholar
38.Guo, Q. X., Itoh, N., Ogawa, H., and Yoshida, A., Jpn. J. Appl. Phys., Part I 34, 4653 (1995).CrossRefGoogle Scholar