Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T06:27:37.953Z Has data issue: false hasContentIssue false

Substrate composition effects on the interfacial fracture of tantalum nitride films

Published online by Cambridge University Press:  31 January 2011

N. R. Moody*
Affiliation:
Sandia National Laboratories, Livermore, California 94551-0969
A. Strojny
Affiliation:
University of Minnesota, Minneapolis, Minnesota 55455
D. L. Medlin
Affiliation:
Sandia National Laboratories, Livermore, California 94551-0969
A. Talin
Affiliation:
Motorola, Tempe, Arizona
W. W. Gerberich
Affiliation:
University of Minnesota, Minneapolis, Minnesota 55455
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study we combined nanoscratch testing with a multilayer sapphire and aluminum nitride single-substrate system to determine the effects of interface composition and structure on susceptibility to fracture of hard, thin tantalum nitride films. Nanoindentation tests showed that the elastic moduli of the tantalum nitride and aluminum nitride films, as well as the sapphire substrate, were essentially equal at 400 GPa. On both portions of the substrate, these tests also showed that near surface hardness was near 35 GPa. Nanoscratch tests triggered long blisters and circular spalls on both the sapphire and aluminum nitride portions of the substrate. The blisters showed that the tantalum nitride film was subjected to a compressive residual stress of −6.7 GPa. The spalls showed that failure occurred along the tantalum nitride film-substrate interface regardless of substrate composition. Most importantly, the blisters and spalls showed that the mode I componentof the fracture energies was essentially equal on both substrate materials at a value near 3.1 J/m2. These energies are on the order of the energies for metallic bonding.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mittal, K. L., Electrocomponent Sci. Technol. 3, 21 (1976).CrossRefGoogle Scholar
2.Au, C. L., Anderson, W.A., Schmitz, D.A., Flassayer, J. C., and Collins, F. M., J. Mater. Res. 5, 1224 (1990).CrossRefGoogle Scholar
3.Moody, N. R., Hwang, R. Q., Venkataraman, S. K., Angelo, J. E., Norwood, D. P., and Gerberich, W. W., Acta Mater. 46, 585 (1998).CrossRefGoogle Scholar
4.Moody, N.R., Medlin, D., Boehme, D., and Norwood, D.P., Eng. Fract. Mech. 61, 107 (1998).CrossRefGoogle Scholar
5.Wu, T.W., J. Mater. Res. 6, 407 (1991).CrossRefGoogle Scholar
6.Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W.W., J. Mater. Res. 7, 1126 (1992).CrossRefGoogle Scholar
7.Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., Thin Solid Films 223, 269 (1993).CrossRefGoogle Scholar
8.Marshall, D. B. and Evans, A. G., J. Appl. Phys. 56, 2632 (1984).CrossRefGoogle Scholar
9.Evans, A. G. and Hutchinson, J. W., Int. J. Solids Struct. 20, 455 (1984).CrossRefGoogle Scholar
10.Hutchinson, J. W. and Suo, Z., in Advances in Applied Mechanics, edited by Hutchinson, J. W. and Wu, T. Y. (Academic Press, Inc., San Diego, CA, 1992), p. 64.Google Scholar
11.Lin, D., J. Phys. D Appl. Phys. 4, 1977 (1971).CrossRefGoogle Scholar
12.Feiler, D., Williams, R., Talin, A., Toon, H., and Goorsky, M., J. Cryst. Growth 171, 12 (1997).CrossRefGoogle Scholar
13.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
14.Oliver, W.C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
15.Massalski, T.B., Binary Alloy Phase Diagrams, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1990).Google Scholar
16.Angelo, J.E., Moody, N.R., Venkataraman, S. K., and Gerberich, W.W., in Structure and Properties of Interfaces in Ceramics, edited by Bonnell, D. A., Rühle, M., and Chowdhry, U. (Mater. Res. Soc. Symp. Proc. 357, Pittsburgh, PA, 1995), p. 195.Google Scholar
17.Horn, D. S., Weidner, W. K., Minehan, W. T., Volmering, J. E., and Zhang, H-X., in Adv. Microelectron. 21, 29 (1994).Google Scholar
18.Teter, D. M., MRS Bull. 23, 22 (1998).CrossRefGoogle Scholar
19.Andrievski, R. A., J. Mater. Sci. 32, 4463 (1997).CrossRefGoogle Scholar
20.Cardinale, D. F., Howitt, D. G., McCarty, K. F., Medlin, D. L., Mirkarimi, P. B., and Moody, N. R., Diam. Relat. Mater. 5, 1295 (1996).CrossRefGoogle Scholar
21.Messaoudi, K., Huntz, A. M., Lesage, B., Haut, C., Lebrun, J. L., and Ji, V., in Corrosion-Deformation Interactions (The Institute of Metals, London, 1997), p. 319.Google Scholar
22.Burnett, P. J. and Rickerby, D. S., Thin Solid Films 157, 233 (1988).CrossRefGoogle Scholar
23.Evans, A. G., Rühle, M., Dalgleish, B. J., and Charalambides, P. G., in Metal-Ceramic Interfaces, edited by Rühle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P. (Pergamon Press, Oxford, 1990), p. 345.CrossRefGoogle Scholar
24.Thouless, M. D., Hutchinson, J. W., and Liniger, E. G., Acta Metall. Mater. 40, 2639 (1992).CrossRefGoogle Scholar