Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T02:30:41.196Z Has data issue: false hasContentIssue false

Structure property relationship in (TiZrNbCu)1−xNix metallic glasses

Published online by Cambridge University Press:  26 June 2018

Emil Babić
Affiliation:
Department of Physics, Faculty of Science, Zagreb HR-10002, Croatia
Damir Pajić
Affiliation:
Department of Physics, Faculty of Science, Zagreb HR-10002, Croatia
Krešo Zadro
Affiliation:
Department of Physics, Faculty of Science, Zagreb HR-10002, Croatia
Katica Biljaković
Affiliation:
Institute of Physics, Zagreb HR-10001, Croatia
Vesna Mikšić Trontl
Affiliation:
Institute of Physics, Zagreb HR-10001, Croatia
Petar Pervan
Affiliation:
Institute of Physics, Zagreb HR-10001, Croatia
Damir Starešinić
Affiliation:
Institute of Physics, Zagreb HR-10001, Croatia
Ignacio A. Figueroa
Affiliation:
Institute for Materials Research-UNAM, Ciudad Universitaria Coyoacan, Ciudad de Mexico C.P. 04510 D.F., Mexico
Ahmed Kuršumović
Affiliation:
Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
Štefan Michalik
Affiliation:
Diamond Light Source Ltd., Harwell Science and Innovation Campus, DidcotOX11 0DE, U.K.
Andrea Lachová
Affiliation:
Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Košice 041 54, Slovak Republic
György Remenyi
Affiliation:
Institut Neel, Universite Grenoble Alpes, Grenoble F-38042, France
Ramir Ristić*
Affiliation:
Department of Physics, University of Osijek, Osijek HR-3100, Croatia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The atomic structure, electronic structure, and physical properties of (TiZrNbCu)1−xNix (x ≤ 0.5) metallic glasses (MGs) were studied in both the high-entropy (0 < x < 0.35) and the higher Ni concentration range (x ≥ 0.35). Atomic structure studies performed with X-ray diffraction and synchrotron powder diffraction provided average atomic volumes, structure factors, radial distribution functions, coordination numbers, and packing densities. Electronic structure studies performed using photoemission spectroscopy and low-temperature specific heat provided information about the electronic density of states within the valence band and at the Fermi level and also about interatomic bonding and atomic vibrations [from the Debye temperature and the boson peak (BP)]. Variations of both atomic structure and electronic structure with x showed a clear change for x ≥ 0.35, which corresponds to a valence electron number ≥7.4. All physical properties, namely, thermal stability parameters, Debye temperatures, BPs, magnetic, elastic, and electronic transport properties, change their concentration-dependence for x ≥ 0.35. The results are compared with those for binary and ternary MGs of the same elements.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Ma, L., Wang, L., Zhang, T., and Inoue, A.: Bulk glas formation of Ti–Zr–Hf–Cu–M (M = Fe–Co–Ni) alloys. Metall. Trans. 43, 277 (2002).Google Scholar
Cantor, B., Kim, K.B., and Warren, P.J.: Novel multicomponent amorphous alloys. Mater. Sci. Forum 386–388, 27 (2002).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).CrossRefGoogle ScholarPubMed
Miracle, D.B.: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 1142 (2015).CrossRefGoogle Scholar
Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar
Yeh, J.W.: Physical metallurgy of high-entropy alloys. JOM 67, 2254 (2015).CrossRefGoogle Scholar
Tsai, M.H.: Physical properties of high entropy alloys. Entropy 15, 5338 (2013).CrossRefGoogle Scholar
Cantor, B.: Multicomponent and high entropy alloys. Entropy 16, 4749 (2014).CrossRefGoogle Scholar
Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Guo, S.: Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 31, 1223 (2015).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Wang, W.H.: Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 66, 1 (2014); and references therein.CrossRefGoogle Scholar
Murty, B.S., Jeh, J.W., and Ranganathan, S.: High-entropy Alloys (Butterworth-Heinemann, London, 2014).CrossRefGoogle Scholar
Gao, M.C., Yeh, J-W., Liaw, P.K., and Zhang, Y., eds.: High Entropy Alloys (Springer International Publishing, Cham, Switzerland, 2016).CrossRefGoogle Scholar
Biljaković, K., Remenyi, G., Figueroa, I.A., Ristić, R., Pajić, D., Kuršumović, A., Starešinić, D., Zadro, K., and Babić, E.: Electronic structure and properties of (TiZrNbCu)1−xNix high entropy amorphous alloys. J. Alloys Compd. 695, 2661 (2017).CrossRefGoogle Scholar
Lužnik, J., Koželj, P., Vrtnik, S., Jelen, A., Jagličić, Z., Meden, A., Feuerbacher, M., and Dolinšek, J.: Complex magnetism of Ho–Dy–Y–Gd–Tb hexagonal high-entropy alloy. Phys. Rev. B 92, 224201 (2015).CrossRefGoogle Scholar
Vrtnik, S., Koželj, P., Meden, A., Maiti, S., Steurer, W., Feuerbacher, M., and Dolinšek, J.: Superconductivity in thermally annealed Ta–Nb–Hf–Zr–Ti high-entropy alloys. J. Alloys Compd. 695, 3530 (2017).CrossRefGoogle Scholar
Koželj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jagličić, Z., Maiti, S., Feuerbacher, M., Steurer, W., and Dolinšek, J.: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).CrossRefGoogle ScholarPubMed
Babić, E., Biljaković, K., Figueroa, I.A., Kuršumović, A., Mikšić Trontl, V., Pajić, D., Pervan, P., Remenyi, G., Ristić, R., and Starešinić, D.: High-Entropy Alloys: New Challenge in Materials Science. Invited Talk, Solid-State Science & Research Conference, Ruđer Bošković Institute, Scires Book of Abstracts (Zagreb, Croatia, 2017); p. 25.Google Scholar
Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).CrossRefGoogle ScholarPubMed
Zuo, T., Gao, M.C., Ouyang, L., Yang, X., Cheng, Y., Feng, R., Chen, S., Liaw, P.K., Hawk, J.A., and Zhang, Y.: Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 130, 10 (2017).CrossRefGoogle Scholar
Wu, Z., Troparevsky, M.C., Gao, Y.F., Morris, J.R., Stocks, G.M., and Bei, H.: Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 267 (2017).CrossRefGoogle Scholar
Huang, S., Holmström, E., Eriksson, O., and Vitos, L.: Mapping the magnetic transition temperatures for medium- and high-entropy alloys. Intermetallics 95, 80 (2018).CrossRefGoogle Scholar
Gao, M.C., Gao, P., Hawk, J.A., Ouyang, L., Alman, D.E., and Widom, M.: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627 (2017).CrossRefGoogle Scholar
Ristić, R., Zadro, K., Pajić, D., Figueroa, I.A., and Babić, E.: On the origin of bulk glass forming ability in Cu–Hf, Zr alloys. EPL 114, 17006 (2016); and reference therein; E. Babić, R. Ristić, I. Figueroa, D. Pajić, Ž. Skoko, and K. Zadro: Electronic structure and glass forming ability in early and late transition metal alloys. Philos. Mag. 98, 693 (2018).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Todai, M., Nagase, T., Hori, T., Matsugaki, A., Sekita, A., and Nakano, T.: Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scr. Mater. 129, 65 (2017).CrossRefGoogle Scholar
Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).Google Scholar
King, D.J.M., Middleburgh, S.C., McGregor, A.G., and Cortie, M.B.: Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172 (2016).CrossRefGoogle Scholar
Wang, F., Inoue, A., Kong, F.L., Han, Y., Zhu, S.L., Shalaan, E., and Al-Marouki, F.: Formation, thermal stability and mechanical properties of high entropy (Fe,Co,Ni,Cr,Mo)-B amorphous alloys. J. Alloys Compd. 732, 637 (2018); and references therein.CrossRefGoogle Scholar
Huo, J., Huo, L., Li, J., Men, H., Wang, X., Inoue, A., Chang, C., Wang, J-Q., and Li, R-W.: High-entropy bulk metallic glasses as promising magnetic refrigerants. J. Appl. Phys. 117, 073902 (2015).CrossRefGoogle Scholar
Figueroa, I.A., Ristić, R., Kuršumović, A., Biljaković, K., Starešinić, D., Pajić, D., Remenyi, G., and Babić, E.: Properties of (TiZrNbCu)1−xNix metallic glasses. J. Alloys Compd. 745, 455 (2018).CrossRefGoogle Scholar
Cunliffe, A., Plummer, J., Figueroa, I., and Todd, I.: Glass formation in a high entropy alloy system by design. Intermetallics 23, 204 (2012).CrossRefGoogle Scholar
Ristić, R., Cooper, J.R., Zadro, K., Pajić, D., Ivkov, J., and Babić, E.: Ideal solution behaviour of glassy Cu–Ti, Zr, Hf alloys and properties of amorphous copper. J. Alloys Compd. 621, 136 (2015).CrossRefGoogle Scholar
Drakopoulos, M., Connolley, T., Reinhard, C., Atwood, R., Magdysyuk, O., Vo, N., Hart, M., Connor, L., Humphreys, B., Howell, G., Davies, S., Hill, T., Wilkin, G., Pedersen, U., Foster, A., De Maio, N., Basham, M., Yuan, F., and Wanelik, K.: I12: The joint engineering, environment and processing (JEEP) beamline at diamond light source. J. Synchrotron Radiat. 22, 828 (2015).CrossRefGoogle ScholarPubMed
Filik, J., Ashton, A.W., Chang, P.C.Y., Chater, P.A., Day, S.J., Drakopoulos, M., Gerring, M.W., Hart, M.L., Magdysyuk, O.V., Michalik, S., Smith, A., Tang, C.C., Terrill, N.J., Wharmby, M.T., and Wilhelmet, H.: Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2. J. Appl. Crystallogr. 50, 959 (2017).CrossRefGoogle Scholar
Remenyi, G., Biljaković, K., Starešinić, D., Dominko, D., Ristić, R., Babić, E., Figueroa, I.A., and Davies, H.A.: Looking for footprint of bulk metallic glass in electronic and phonon heat capacities of Cu55Hf45−xTix alloys. Appl. Phys. Lett. 104, 171906 (2014).CrossRefGoogle Scholar
Gao, M.C., Zhang, C., Gao, P., Zhang, F., Ouyang, L.Z., Widom, M., and Hawk, J.A.: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238 (2017).CrossRefGoogle Scholar
Sheikh, S., Mao, H., and Guo, S.: Predicting solid solubility in CoCrFeNiMx (M = 4d transition metal) high-entropy alloys. J. Appl. Phys. 121, 194903 (2017); and references therein.CrossRefGoogle Scholar
Calvayrac, Y., Chevalier, J.P., Harmelin, M., and Quivy, A.: On the stability and structure of Cu–Zr based glasses. Philos. Mag. B 48, 323 (1983).CrossRefGoogle Scholar
Ristić, R. and Babić, E.: Thermodynamic properties and atomic structure of amorphous zirconium. Mater. Sci. Eng., A 449–451, 569 (2007).CrossRefGoogle Scholar
Ristić, R. and Babić, E.: Magnetic susceptibility and atomic structure of paramagnetic Zr–(Co, Ni, Cu) amorphous alloys. J. Non-Cryst. Solids 353, 3108 (2007).CrossRefGoogle Scholar
Bakonyi, I., Ebert, H., and Liechenstein, A.I.: Electronic structure and magnetic susceptibility of the different structural modifications of Ti, Zr, and Hf metals. Phys. Rev. B 48, 7841 (1993).CrossRefGoogle ScholarPubMed
Bakonyi, I.: Atomic volumes and local structure of metallic glasses. Acta Mater. 53, 2509 (2005).CrossRefGoogle Scholar
Ma, D., Stoica, A.D., and Wang, X-L.: Volume conservation in bulk metallic glasses. Appl. Phys. Lett. 91, 021905 (2007).CrossRefGoogle Scholar
Hufnagel, T.C., Ott, R.T., and Almer, J.: Structural aspects of elastic deformation of a metallic glass. Phys. Rev. B 73, 064204 (2006).CrossRefGoogle Scholar
Egami, T. and Billinge, S.: Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon Press, Elsevier, Oxford, England, 2003).Google Scholar
Bednarcik, J., Michalik, S., Kolesar, V., Rutt, U., and Franz, H.: In situ XRD studies of nanocrystallization of Fe-based metallic glass: A comparative study by reciprocal and direct space methods. Phys. Chem. Chem. Phys. 15, 8470 (2013).CrossRefGoogle ScholarPubMed
Waseda, Y.: The Structure of Non-crystalline Materials (McGraw-Hill Inc., 1980).Google Scholar
Faber, T.E. and Ziman, J.M.: A theory of the electrical properties of liquid metals. Philos. Mag. 11, 153 (1965).CrossRefGoogle Scholar
Qiu, X., Thompson, J.W., and Billinge, S.J.L.: PDFgetX2: A GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Cryst. 37, 678 (2004).CrossRefGoogle Scholar
Scudino, S., Stoica, M., Kaban, I., Prashanth, K.G., Vaughan, G.B.M., and Eckert, J.: Length scale-dependent structural relaxation in Zr57.5Ti7.5Nb5Cu12.5Ni10Al7.5 metallic glass. J. Alloys Compd. 639, 465 (2015); N. Mattern, U. Kuhn, H. Hermann, H. Ehrenberg, J. Neufeind, and J. Eckert: Short-range order of Zr62−xTixAl10Cu20Ni10 bulk metallic glasses. Acta. Mater. 50, 305 (2002).CrossRefGoogle Scholar
Tian, F., Varga, L.K., Chen, N., Shen, J., and Vitos, L.: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 599, 19 (2014).CrossRefGoogle Scholar
Oelhafen, P., Hauser, E., and Güntherodt, H-J.: Varying d-band splliting in glassy transition metal alloys. Solid State Commun. 35, 1017 (1980).CrossRefGoogle Scholar
Ristić, R., Babić, E., Šaub, K., and Miljak, M.: Electrical and magnetic properties of amorphous Zr100−xCux alloys. Fizika 15, 363 (1983); E. Babić, R. Ristić, M. Miljak, M.G. Scott, and G. Gregan: Superconductivity in zirconium-nickel glasses. Solid State Commun. 39, 139 (1981).Google Scholar
Bakonyi, I.: Electronic structure and atomic structure of (Ti,Zr,Hf)–(Ni,Cu) metallic glasses. J. Non-Cryst. Solids 180, 131 (1995).CrossRefGoogle Scholar
Ristić, R., Stubičar, M., and Babić, E.: Correlation between mechanical, thermal and electronic properties in Zr–Ni, Cu amorphous alloys. Philos. Mag. 87, 5629 (2007); R. Ristić, E. Babić, M. Stubičar, and A. Kuršumović: Correlation between electronic structure, mechanical properties and stability of TE-TL metallic glasses. Croat. Chem. Acta 83, 33 (2010).CrossRefGoogle Scholar
Hasegawa, M., Sato, H., Takeuchi, T., Soda, K., and Mizutani, U.: Electronic structure of Zr-based metallic glasses. J. Alloys Compd. 483, 638 (2009); C. Hausleitner and J. Hafner: Hybridized nearly free electron tight binding approach to interatomic forces in disordered transition-metal alloys. II. Modeling of metallic glasses. Phys. Rev. B 45, 128 (1992).CrossRefGoogle Scholar
Mikšić Trontl, V. et al.: in preparation, 2018.Google Scholar
Zehringer, R., Oelhafen, P., Güntherodt, H-J., Yamada, Y., and Mizutani, U.: Electronic structure of (Ni33Zr67)85X15 (X = Ti, V, Cr, Mn, Fe, Co and Cu metallic glasses studied by photoelectron spectroscopy. Mater. Sci. Eng. 99, 317320 (1988).CrossRefGoogle Scholar
Mikšić Trontl, V., Pervan, P., and Milun, M.: Growth and electronic properties of ultra-thin Ag films on Ni(111). Surf. Sci. 603, 125130 (2009).CrossRefGoogle Scholar
Calloni, A., Bussetti, G., Berti, G., Yivlialin, R., Camera, A., Finazzi, M., Duò, L., and Ciccacci, F.: Electronic and magnetic structure of ultra-thin Ni films grown on W(110). J. Magn. Magn. Mater. 420, 356362 (2016).CrossRefGoogle Scholar
Greig, D., Gallagher, B.L., Howson, M.A., Law, D.S-L., Norman, D., and Quinn, F.M.: Photoemission studies on metallic glasses using synchrotron radiation. Mater. Sci. Eng. 99, 265 (1988).CrossRefGoogle Scholar
Takahara, Y. and Narita, N.: Local electronic structures and chemical bonds in Zr-based metallic glasses. Mater. Trans. 45, 1172 (2004).CrossRefGoogle Scholar
Höchst, H., Steiner, P., Reiter, G., and Hiifner, S.: XPS Valence Bands of Ti, Zr, Nb, Mo and Hf. Z. phys. B: Condens. Matter 42, 199 (1981).Google Scholar
Xiang, P., Liu, J.S., Li, M.Y., Yang, H.F., Liu, Z.T., Fan, C.C., Shen, D.W., Wang, Z., and Liu, Z.: In situ electronic structure study of epitaxial niobium thin films by angle-resolved photoemission spectroscopy. Chin. Phys. Lett. 34, 077402 (2017).CrossRefGoogle Scholar
Kübler, J., Bennemann, K.H., Lapka, R., Rösel, F., Oelhafen, P., and Güntherodt, H-J.: Electronic structure of amorphous transition-metal alloys. Phys. Rev. B 23, 5176 (1981).CrossRefGoogle Scholar
Moody, D.E. and Ng, T.K.: Low temperature specific heats of amorphous Cu–Ti alloys. In LT17 Proceedings, Eckern, U., Schmid, A., Weber, W., and Wühl, H., eds. (Elsevier Science Publishers B.V, 1984); p. B06.Google Scholar
Kanemaki, S., Suzuki, M., Yamada, Y., and Mizutani, U.: Low temperature specific heat, magnetic susceptibility and electrical resistivity measurements in Ni–Ti metallic glasses. J. Phys. F: Met. Phys. 18, 105 (1988).CrossRefGoogle Scholar
Garoche, P. and Bigot, J.: Comparison between amorphous and crystalline phases of copper–zirconium alloys by specific-heat measurements. Phys. Rev. B 28, 6886 (1983).CrossRefGoogle Scholar
Matsuura, M. and Mizutani, U.: Low-temperature specific heat study of Ni100−xZrx (x = 30–80) metallic glasses. J. Phys. F: Met. Phys. 16, L183 (1986).CrossRefGoogle Scholar
Karkut, M.G. and Hake, R.R.: Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metals alloys. Phys. Rev. B 28, 1396 (1983).CrossRefGoogle Scholar
Ivkov, J., Babić, E., and Jacobs, R.L.: Hall effect and electronic structure of glassy Zr-3d alloys. J. Phys. F: Met. Phys. 14, L53 (1984).CrossRefGoogle Scholar
Kuveždić, M., Tafra, E., Basletić, M., Ristić, R., Trontl, V. Mikšić, Pervan, P., Figueroa, I.A., and Babić, E.: Electronic structure and transport properties of (TiZrNbCu)1−xNix metallic glasses. in preparation, 2018.Google Scholar
McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331 (1968).CrossRefGoogle Scholar
Banhart, J., Ebert, H., and Voitlander, J.: Diamagnetic susceptibility of pure metals and binary alloys. J. Magn. Magn, Mater. 61, 221 (1986).CrossRefGoogle Scholar
Place, C.M. and Rhodes, P.: Paramagnetic orbital susceptibility of transition metals. Phys. Status Solidi B 47, 475 (1971).CrossRefGoogle Scholar
Cheng, Y.Q. and Ma, E.: Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater.Sci. 56, 379 (2011).CrossRefGoogle Scholar
Salčinović Fetić, A., Remenyi, G., Starešinić, D., Kuršumović, A., Babić, E., Sulejmanović, S., and Biljaković, K.: Analysis of the fragility of the Zr77Ni23 metallic glass based on low-temperature heat capacity measurements. Phys. Rev. B 96, 064201 (2017).CrossRefGoogle Scholar
Ristić, R., Babić, E., Stubičar, M., Kuršumović, A., Cooper, J.R., Figueroa, I.A., Davies, H.A., Todd, I., Varga, L.K., and Bakonyi, I.: Simple correlation between mechanical and thermal properties in TE–TL (TE = Ti, Zr, Hf; TL = Ni, Cu) amorphous alloys. J. Non-Cryst. Solids 357, 2949 (2011).CrossRefGoogle Scholar
Marohnić, Ž., Guberović, M., Babić, E., and Morgan, G.J.: Induced conductivity anisotropy in glassy Zr1−xMx alloys. J. Phys. F: Met. Phys. 17, 1123 (1987).CrossRefGoogle Scholar
Whang, S.H., Polk, D.E., and Giessen, B.C.: Hardness versus Young's modulus of metallic glasses. In Proceedings of the Fourth International Conference on Rapidly Quenched Metals, Masumoto, T. and Suzuku, K., eds. (Japan Institute of Metals, Sendai, 1982); p. 1365.Google Scholar
Cohrane, R.W., Destry, J., El Amrani, M., Altounian, Z., and Strom-Olsen, J.O.: Pressure dependence of the resistivity of amorphous NiZr alloys. In Proceedings of the Fourth International Conference on Rapidly Quenched Metals, Steeb, S. and Warlimont, H., eds. (Elsevier, 1985); p. 1083.CrossRefGoogle Scholar
Davis, L.A., Chou, C-P., Tanner, L.E., and Ray, R.: Strength and stiffnesses of metallic glasses. Scr. Mater. 10, 937 (1976).Google Scholar
Ristić, R., Babić, E., Pajić, D., Zadro, K., Kuršumović, A., Figueroa, I.A., Davies, H.A., Todd, I., Varga, L.K., and Bakonyi, I.: Properties and atomic structure of amorphous early transition metals. J. Alloys Compd. 504S, S194 (2010).CrossRefGoogle Scholar
Maiti, S. and Steurer, W.: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87 (2016).CrossRefGoogle Scholar
Fukuyama, H. and Hoshino, K.: Effect of spin-orbit interaction on magnetoresistance in the weakly localized region of three-dimensional disordered systems. J. Phys. Soc. Jpn. 50, 2131 (1981).CrossRefGoogle Scholar
Šaub, K., Babić, E., and Ristić, R.: Quantum corrections to conductivity of glassy Zr100−xCux alloys. Solid State Commun. 53, 269 (1985).CrossRefGoogle Scholar
Babić, E. and Šaub, K.: Universal conductivity variation in glassy Zr–M alloys. Solid State Commun. 56, 111 (1985).CrossRefGoogle Scholar
Ristić, R., Babić, E., and Šaub, K.: Temperature and concentration dependence of the electrical resistivity of Zr–Cu and Zr–Ni glassy alloys. Fizika 21(Suppl. 1) 216 (1989).Google Scholar
Tafra, E., Basletić, M., Ristić, R., Babić, E., and Hamzić, A.: Enhanced superconductivity in Hf-base metallic glasses. J. Phys.: Condens. Matter 20, 425215 (2008).Google Scholar