Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T17:07:16.798Z Has data issue: false hasContentIssue false

Strengthening mechanisms and deformability of nanotwinned AlMg alloys

Published online by Cambridge University Press:  09 November 2018

Sichuang Xue*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Qiang Li
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Zhe Fan
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Han Wang
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Yifan Zhang*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Jie Ding
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Haiyan Wang
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA; and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Xinghang Zhang*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

AlMg alloys have widespread industrial applications. Grain refinement techniques have been frequently used to achieve high strength in these alloys. Here, we report on the fabrication of epitaxial co-sputtered AlMg thin films with high-density growth twins. The microstructure evolution with varying Mg composition has been characterized. Nanoindentation and in-situ micropillar compression tests show that the strength of AlMg alloys increases with increasing Mg composition. The flow stress of epitaxial nanotwinned Al–10 at.% Mg thin film exceeds 800 MPa. The modified Hall–Petch plots incorporating the solid solution strengthening effect suggest that, compared to high angle grain boundaries, incoherent twin boundaries are equivalent barriers to the transmission of dislocations in nanotwinned AlMg alloys.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hirsch, J.: Recent development in aluminium for automotive applications. Trans. Nonferrous Met. Soc. China 24, 1995 (2014).CrossRefGoogle Scholar
Hirsch, J. and Al-Samman, T.: Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61, 818 (2013).CrossRefGoogle Scholar
Fine, M.E.: Precipitation hardening of aluminum alloys. Metall. Mater. Trans. A 6, 625 (1975).CrossRefGoogle Scholar
Park, J. and Ardell, A.: Correlation between microstructure and calorimetric behavior of aluminum alloy 7075 and AlZnMg alloys in various tempers. Mater. Sci. Eng., A 114, 197 (1989).CrossRefGoogle Scholar
Richard, D. and Adler, P.N.: Calorimetric studies of 7000 series aluminum alloys: I. Matrix precipitate characterization of 7075. Metall. Mater. Trans. A 8, 1177 (1977).CrossRefGoogle Scholar
Berg, L.K., Gjønnes, J., Hansen, V., Li, X.Z., Knutson-Wedel, M., Waterloo, G., Schryvers, D., and Wallenberg, L.R.: GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 49, 3443 (2001).CrossRefGoogle Scholar
Han, W., Cheng, G., Li, S., Wu, S., and Zhang, Z.: Deformation induced microtwins and stacking faults in aluminum single crystal. Phys. Rev. Lett. 101, 115505 (2008).CrossRefGoogle ScholarPubMed
Chowdhury, P., Sehitoglu, H., Maier, H., and Rateick, R.: Strength prediction in NiCo alloys—The role of composition and nanotwins. Int. J. Plast. 79, 237 (2016).CrossRefGoogle Scholar
Zhao, Y., Zhu, Y., Liao, X., Horita, Z., and Langdon, T.: Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl. Phys. Lett. 89, 121906 (2006).CrossRefGoogle Scholar
Youssef, K., Scattergood, R., Murty, K., and Koch, C.: Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr. Mater. 54, 251 (2006).CrossRefGoogle Scholar
Koch, C., Scattergood, R., Darling, K., and Semones, J.: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43, 7264 (2008).CrossRefGoogle Scholar
Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337, 951 (2012).CrossRefGoogle ScholarPubMed
Detor, A. and Schuh, C.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007).CrossRefGoogle Scholar
Zhao, S., Meng, C., Mao, F., Hu, W., and Gottstein, G.: Influence of severe plastic deformation on dynamic strain aging of ultrafine grained Al–Mg alloys. Acta Mater. 76, 54 (2014).CrossRefGoogle Scholar
Liddicoat, P.V., Liao, X-Z., Zhao, Y., Zhu, Y., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., and Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 63 (2010).CrossRefGoogle ScholarPubMed
Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., and Zhu, Y.: Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM 68, 1216 (2016).CrossRefGoogle Scholar
Horita, Z., Fujinami, T., Nemoto, M., and Langdon, T.G.: Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Metall. Mater. Trans. A 31, 691 (2000).CrossRefGoogle Scholar
Rupert, T.J., Trenkle, J.C., and Schuh, C.A.: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).CrossRefGoogle Scholar
Hu, J., Shi, Y., Sauvage, X., Sha, G., and Lu, K.: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292 (2017).CrossRefGoogle ScholarPubMed
Koch, C., Morris, D., Lu, K., and Inoue, A.: Ductility of nanostructured materials. MRS Bull. 24, 54 (1999).CrossRefGoogle Scholar
Wang, H., Tiwari, A., Kvit, A., Zhang, X., and Narayan, J.: Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer. Appl. Phys. Lett. 80, 2323 (2002).CrossRefGoogle Scholar
Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).CrossRefGoogle ScholarPubMed
Lu, L., Chen, X., Huang, X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607 (2009).CrossRefGoogle ScholarPubMed
Lu, K., Yan, F., Wang, H., and Tao, N.: Strengthening austenitic steels by using nanotwinned austenitic grains. Scr. Mater. 66, 878 (2012).CrossRefGoogle Scholar
Bufford, D., Liu, Y., Wang, J., Wang, H., and Zhang, X.: In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat. Commun. 5, 4864 (2014).CrossRefGoogle ScholarPubMed
Beyerlein, I.J., Zhang, X., and Misra, A.: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, 329 (2014).CrossRefGoogle Scholar
Zhang, X., Wang, H., Chen, X., Lu, L., Lu, K., Hoagland, R., and Misra, A.: High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett. 88, 173116 (2006).CrossRefGoogle Scholar
Zhang, Y., Wang, J., Shan, H., and Zhao, K.: Strengthening high-stacking-fault-energy metals via parallelogram nanotwins. Scr. Mater. 108, 35 (2015).CrossRefGoogle Scholar
Anderoglu, O., Misra, A., Ronning, F., Wang, H., and Zhang, X.: Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films. J. Appl. Phys. 106, 24313 (2009).CrossRefGoogle Scholar
Li, Q., Xue, S.C., Wang, J., Shao, S., Kwong, A.H., Giwa, A., Fan, Z., Liu, Y., Qi, Z.M., Ding, J., Wang, H., Greer, J.R., Wang, H.Y., and Zhang, X.H.: High-strength nanotwinned Al alloys with 9R phase. Adv. Mater. 30, 1704629 (2018).CrossRefGoogle ScholarPubMed
Velasco, L. and Hodge, A.M.: Growth twins in high stacking fault energy metals: Microstructure, texture and twinning. Mater. Sci. Eng., A 687, 93 (2017).CrossRefGoogle Scholar
Bufford, D., Bi, Z., Jia, Q., Wang, H., and Zhang, X.: Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101, 223112 (2012).CrossRefGoogle Scholar
Bufford, D., Liu, Y., Zhu, Y., Bi, Z., Jia, Q., Wang, H., and Zhang, X.: Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 1, 51 (2013).CrossRefGoogle Scholar
Zhang, X., Bufford, D., Wang, H., and Liu, Y.: Method for Producing High Stacking Fault Energy (SFE) Metal Films, Foils, and Coatings with High-density Nanoscale Twin Boundaries. United States Patent No. 10023977 (2014).Google Scholar
Yu, K., Bufford, D., Chen, Y., Liu, Y., Wang, H., and Zhang, X.: Basic criteria for formation of growth twins in high stacking fault energy metals. Appl. Phys. Lett. 103, 181903 (2013).CrossRefGoogle Scholar
Liu, Y., Bufford, D., Wang, H., Sun, C., and Zhang, X.: Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 59, 1924 (2011).CrossRefGoogle Scholar
Yu, K., Liu, Y., Rios, S., Wang, H., and Zhang, X.: Strengthening mechanisms of Ag/Ni immiscible multilayers with fcc/fcc interface. Surf. Coat. Technol. 237, 269 (2013).CrossRefGoogle Scholar
Medlin, D., Campbell, G., and Carter, C.B.: Stacking defects in the 9R phase at an incoherent twin boundary in copper. Acta Mater. 46, 5135 (1998).CrossRefGoogle Scholar
Wang, J., Misra, A., and Hirth, J.: Shear response of Σ3 {112} twin boundaries in face-centered-cubic metals. Phys. Rev. B 83, 064106 (2011).CrossRefGoogle Scholar
Bufford, D., Wang, H., and Zhang, X.: High strength, epitaxial nanotwinned Ag films. Acta Mater. 59, 93 (2011).CrossRefGoogle Scholar
Anderoglu, O., Misra, A., Wang, H., Ronning, F., Hundley, M.F., and Zhang, X.: Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93, 083108 (2008).CrossRefGoogle Scholar
Xue, S., Kuo, W., Li, Q., Fan, Z., Ding, J., Su, R., Wang, H., and Zhang, X.: Texture-directed twin formation propensity in Al with high stacking fault energy. Acta Mater. 144, 226 (2018).CrossRefGoogle Scholar
Gallagher, P.: The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Trans. 1, 2429 (1970).Google Scholar
Johari, O. and Thomas, G.: Substructures in explosively deformed Cu and Cu–Al alloys. Acta Metall. 12, 1153 (1964).CrossRefGoogle Scholar
Rohatgi, A., Vecchio, K.S., and Gray, G.T.: The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A 32, 135 (2001).CrossRefGoogle Scholar
Velasco, L., Polyakov, M.N., and Hodge, A.M.: Influence of stacking fault energy on twin spacing of Cu and Cu–Al alloys. Scr. Mater. 83, 33 (2014).CrossRefGoogle Scholar
Zhang, Y., Tao, N.R., and Lu, K.: Effect of stacking-fault energy on deformation twin thickness in Cu–Al alloys. Scr. Mater. 60, 211 (2009).CrossRefGoogle Scholar
Sun, P-L., Zhao, Y., Cooley, J., Kassner, M., Horita, Z., Langdon, T., Lavernia, E., and Zhu, Y.: Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening. Mater. Sci. Eng., A 525, 83 (2009).CrossRefGoogle Scholar
Chandran, M. and Sondhi, S.: First-principle calculation of stacking fault energies in Ni and Ni–Co alloy. J. Appl. Phys. 109, 103525 (2011).CrossRefGoogle Scholar
Schulthess, T., Turchi, P., Gonis, A., and Nieh, T-G.: Systematic study of stacking fault energies of random Al-based alloys. Acta Mater. 46, 2215 (1998).CrossRefGoogle Scholar
Campbell, G.H., Chan, D.K., Medlin, D.L., Angelo, J.E., and Carter, C.B.: Dynamic observation of the fcc to 9r shear transformation in a copper Σ = 3 incoherent twin boundary. Scr. Mater. 35, 837 (1996).CrossRefGoogle Scholar
Ernst, F., Finnis, M.W., Hofmann, D., Muschik, T., Schönberger, U., Wolf, U., and Methfessel, M.: Theoretical prediction and direct observation of the 9R structure in Ag. Phys. Rev. Lett. 69, 620 (1992).CrossRefGoogle ScholarPubMed
Wang, J., Anderoglu, O., Hirth, J.P., Misra, A., and Zhang, X.: Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals. Appl. Phys. Lett. 95, 021908 (2009).CrossRefGoogle Scholar
Wang, J., Li, N., Anderoglu, O., Zhang, X., Misra, A., Huang, J., and Hirth, J.: Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58, 2262 (2010).CrossRefGoogle Scholar
Liu, L., Wang, J., Gong, S., and Mao, S.: High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett. 106, 175504 (2011).CrossRefGoogle ScholarPubMed
Gu, J., Zhang, L., Ni, S., and Song, M.: Formation of large scaled zero-strain deformation twins in coarse-grained copper. Scr. Mater. 125, 49 (2016).CrossRefGoogle Scholar
Xue, S., Fan, Z., Lawal, O.B., Thevamaran, R., Li, Q., Liu, Y., Yu, K., Wang, J., Thomas, E.L., and Wang, H.: High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium. Nat. Commun. 8, 1653 (2017).CrossRefGoogle ScholarPubMed
Ma, K., Wen, H., Hu, T., Topping, T.D., Isheim, D., Seidman, D.N., Lavernia, E.J., and Schoenung, J.M.: Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141 (2014).CrossRefGoogle Scholar
Zha, M., Li, Y., Mathiesen, R.H., Bjørge, R., and Roven, H.J.: Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing. Acta Mater. 84, 42 (2015).CrossRefGoogle Scholar
Kapoor, R. and Chakravartty, J.: Deformation behavior of an ultrafine-grained Al–Mg alloy produced by equal-channel angular pressing. Acta Mater. 55, 5408 (2007).CrossRefGoogle Scholar
Fan, G., Choo, H., Liaw, P., and Lavernia, E.: Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution. Acta Mater. 54, 1759 (2006).CrossRefGoogle Scholar
Shan, Z., Stach, E., Wiezorek, J., Knapp, J., Follstaedt, D., and Mao, S.: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).CrossRefGoogle ScholarPubMed
Leyson, G.P.M., Curtin, W.A., Hector, L.G. Jr., and Woodward, C.F.: Quantitative prediction of solute strengthening in aluminium alloys. Nat. Mater. 9, 750 (2010).CrossRefGoogle ScholarPubMed
Fleischer, R.L.: Solution hardening by tetragonal dist ortions: Application to irradiation hardening in F.C.C. crystals. Acta Metall. 10, 835 (1962).CrossRefGoogle Scholar
Fleischer, R.L.: Substitutional solution hardening. Acta Metall. 11, 203 (1963).CrossRefGoogle Scholar
Hall, E.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc., London, Sect. B 64, 747 (1951).CrossRefGoogle Scholar
Wyrzykowski, J. and Grabski, M.: The Hall–Petch relation in aluminium and its dependence on the grain boundary structure. Philos. Mag. A 53, 505 (1986).CrossRefGoogle Scholar
Hansen, N.: Hall–Petch relation and boundary strengthening. Scr. Mater. 51, 801 (2004).CrossRefGoogle Scholar
Misra, A., Hirth, J., and Hoagland, R.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
Sangid, M.D., Ezaz, T., Sehitoglu, H., and Robertson, I.M.: Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 59, 283 (2011).CrossRefGoogle Scholar
Tsuji, N., Ito, Y., Saito, Y., and Minamino, Y.: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893 (2002).CrossRefGoogle Scholar
Hayes, R., Witkin, D., Zhou, F., and Lavernia, E.: Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater. 52, 4259 (2004).CrossRefGoogle Scholar
Mata, M., Anglada, M., and Alcalá, J.: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964 (2002).CrossRefGoogle Scholar
Yu, W., Shen, S., Liu, Y., and Han, W.: Nonhysteretic superelasticity and strain hardening in a copper bicrystal with a Σ3 {112} twin boundary. Acta Mater. 124, 30 (2017).CrossRefGoogle Scholar

Xue et al. supplementary material

Xue et al. supplementary material 1

Download Xue et al. supplementary material(Video)
Video 1.3 MB

Xue et al. supplementary material

Xue et al. supplementary material 2

Download Xue et al. supplementary material(Video)
Video 1.9 MB
Supplementary material: Image

Xue et al. supplementary material

Xue et al. supplementary material 3

Download Xue et al. supplementary material(Image)
Image 9.9 MB

Xue et al. supplementary material

Xue et al. supplementary material 4

Download Xue et al. supplementary material(Video)
Video 2.3 MB