Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T16:18:43.043Z Has data issue: false hasContentIssue false

Stability of organic solar cells with PCDTBT donor polymer: An interlaboratory study

Published online by Cambridge University Press:  21 June 2018

Laura Ciammaruchi
Affiliation:
Parc Mediterani de la Technologia, ICFO – Institut de Ciències Fotòniques, Castelldefels (Barcelona) 08860, Spain
Ricardo Oliveira
Affiliation:
Instituto de Telecomunicações, Instituto Superior Tecnico, Lisboa P-1049-001, Portugal
Ana Charas
Affiliation:
Instituto de Telecomunicações, Instituto Superior Tecnico, Lisboa P-1049-001, Portugal
Tulus
Affiliation:
Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; and Center of the Polymer Technology, Agency for the Assessment and Application of Technology (BPPT), Indonesia
Elizabeth von Hauff
Affiliation:
Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
Giuseppina Polino
Affiliation:
CHOSE—Centre for Hybrid and Organic Solar Energy Department of Electronic Engineering, University of Rome Tor Vergata, Rome 00133, Italy; and Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples 80125, Italy
Francesca Brunetti
Affiliation:
CHOSE—Centre for Hybrid and Organic Solar Energy Department of Electronic Engineering, University of Rome Tor Vergata, Rome 00133, Italy
Rickard Hansson
Affiliation:
Department of Engineering and Physics, Karlstad University, Karlstad 65188, Sweden
Ellen Moons
Affiliation:
Department of Engineering and Physics, Karlstad University, Karlstad 65188, Sweden
Miron Krassas
Affiliation:
Center of Materials Technology and Photonics & Electrical Engineering Department, School of Applied Technology, Technological Educational Institute (TEI) of Crete, Heraklion 71004, Greece
George Kakavelakis
Affiliation:
Center of Materials Technology and Photonics & Electrical Engineering Department, School of Applied Technology, Technological Educational Institute (TEI) of Crete, Heraklion 71004, Greece
Emmanuel Kymakis
Affiliation:
Center of Materials Technology and Photonics & Electrical Engineering Department, School of Applied Technology, Technological Educational Institute (TEI) of Crete, Heraklion 71004, Greece
José G. Sánchez
Affiliation:
Departament d’Enginyeria Electrònica Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona 43007, Spain
Josep Ferre-Borrull
Affiliation:
Departament d’Enginyeria Electrònica Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona 43007, Spain
Lluis F. Marsal
Affiliation:
Departament d’Enginyeria Electrònica Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona 43007, Spain
Simon Züfle
Affiliation:
Institute of Computational Physics, Zurich University of Applied Sciences, Winterthur 8401, Switzerland; and Fluxim AG, Winterthur 8406, Switzerland
Daniel Fluhr
Affiliation:
Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany; Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena 07743, Germany; and Institute of Physics, TU Ilmenau, Ilmenau 98693, Germany
Roland Roesch
Affiliation:
Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany; and Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena 07743, Germany
Tobias Faber
Affiliation:
Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany; and Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena 07743, Germany
Ulrich S. Schubert
Affiliation:
Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany; and Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena 07743, Germany
Harald Hoppe
Affiliation:
Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany; and Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena 07743, Germany
Klaas Bakker
Affiliation:
ECN - Solliance, Eindhoven 5656AE, the Netherlands
Sjoerd Veenstra
Affiliation:
ECN - Solliance, Eindhoven 5656AE, the Netherlands
Gloria Zanotti
Affiliation:
Istituto di Struttura della Materia (ISM) - CNR, 00015 Monterotondo (Rm), Italy; and Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
Eugene A. Katz
Affiliation:
Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel; and Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
Pälvi Apilo
Affiliation:
VTT Technical Research Centre of Finland Ltd., Oulu 90571, Finland
Beatriz Romero
Affiliation:
Superior School of Experimental Sciences and Technology, Universidad Rey Juan Carlos, Móstoles 28933, Madrid, Spain
Tülay Aslı Tumay
Affiliation:
TÜBİTAK MAM Material Institute, Photonic Technologies Laboratory, Gebze 41470, Kocaeli, Turkey
Elif Parlak
Affiliation:
TÜBİTAK MAM Material Institute, Photonic Technologies Laboratory, Gebze 41470, Kocaeli, Turkey
Luciano Mule Stagno
Affiliation:
Institute for Sustainable Energy, University of Malta, Marsaxlokk MXK1531, Malta
Vida Turkovic
Affiliation:
TÜBİTAK MAM Materials Institute, Photonic Technologies Laboratory, Gebze 41470, Kocaeli, Turkey
Horst-Günter Rubahn
Affiliation:
TÜBİTAK MAM Materials Institute, Photonic Technologies Laboratory, Gebze 41470, Kocaeli, Turkey
Morten Madsen
Affiliation:
TÜBİTAK MAM Materials Institute, Photonic Technologies Laboratory, Gebze 41470, Kocaeli, Turkey
Vaidotas Kažukauskas
Affiliation:
Institute of Photonics and Nanotechnology, Vilnius University, Vilnius LT-10257, Lithuania
David M. Tanenbaum
Affiliation:
Department of Physics & Astronomy, Pomona College, Claremont, California 91711, USA
Santhosh Shanmugam
Affiliation:
TNO - Solliance, Eindhoven 5656AE, the Netherlands
Yulia Galagan*
Affiliation:
TNO - Solliance, Eindhoven 5656AE, the Netherlands
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This work is part of the interlaboratory collaboration to study the stability of organic solar cells containing PCDTBT polymer as a donor material. The varieties of the OPV devices with different device architectures, electrode materials, encapsulation, and device dimensions were prepared by seven research laboratories. Sets of identical devices were aged according to four different protocols: shelf lifetime, laboratory weathering under simulated illumination at ambient temperature, laboratory weathering under simulated illumination, and elevated temperature (65 °C) and daylight outdoor weathering under sunlight. The results generated in this study allow us to outline several general conclusions related to PCDTBT-based bulk heterojunction (BHJ) solar cells. The results herein reported can be considered as practical guidance for the realization of stabilization approaches in BHJ solar cells containing PCDTBT.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T.T., and Krebs, F.C.: Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 3649 (2012).Google Scholar
Youn, H., Park, H.J., and Guo, L.J.: Organic photovoltaic cells: From performance improvement to manufacturing processes. Small 11, 22282246 (2015).CrossRefGoogle ScholarPubMed
Heeger, A.J.: Semiconducting polymers: The third generation. Chem. Soc. Rev. 39, 23542371 (2010).Google Scholar
Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H., Ma, W., and Yan, H.: Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).Google Scholar
Zhao, W., Li, S., Yao, H., Zhang, S., Zhang, Y., Yang, B., and Hou, J.: Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 71487151 (2017).Google Scholar
Li, G., Chang, W-H., and Yang, Y.: Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat. Rev. Mater. 2, 17043 (2017).Google Scholar
Beaupre, S. and Leclerc, M.: PCDTBT: En route for low cost plastic solar cells. J. Mater. Chem. A 1, 1109711105 (2013).CrossRefGoogle Scholar
Peters, C.H., Sachs-Quintana, I.T., Kastrop, J.P., Beaupré, S., Leclerc, M., and McGehee, M.D.: High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 1, 491494 (2011).Google Scholar
Wang, D.H., Kim, J.K., Seo, J.H., Park, O.O., and Park, J.H.: Stability comparison: A PCDTBT/PC71BM bulk-heterojunction versus a P3HT/PC71BM bulk-heterojunction. Sol. Energy Mater. Sol. Cells 101(Suppl. C), 249255 (2012).CrossRefGoogle Scholar
Heumueller, T., Mateker, W.R., Distler, A., Fritze, U.F., Cheacharoen, R., Nguyen, W.H., Biele, M., Salvador, M., von Delius, M., Egelhaaf, H-J., McGehee, M.D., and Brabec, C.J.: Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 9, 247256 (2016).Google Scholar
Gasparini, N., Salvador, M., Strohm, S., Heumueller, T., Levchuk, I., Wadsworth, A., Bannock, J.H., de Mello, J.C., Egelhaaf, H-J., Baran, D., McCulloch, I., and Brabec, C.J.: Burn-in free nonfullerene-based organic solar cells. Adv. Energy Mater. 7, 1700770 (2017).Google Scholar
Synooka, O., Eberhardt, K-R., Singh, C.R., Hermann, F., Ecke, G., Ecker, B., von Hauff, E., Gobsch, G., and Hoppe, H.: Influence of thermal annealing on PCDTBT:PCBM composition profiles. Adv. Energy Mater. 4, 1300981 (2014).Google Scholar
Wang, T., Pearson, A.J., Dunbar, A.D.F., Staniec, P.A., Watters, D.C., Yi, H., Ryan, A.J., Jones, R.A.L., Iraqi, A., and Lidzey, D.G.: Correlating structure with function in thermally annealed PCDTBT:PC70BM photovoltaic blends. Adv. Funct. Mater. 22, 13991408 (2012).CrossRefGoogle Scholar
Li, Z., Chiu, K.H., Shahid Ashraf, R., Fearn, S., Dattani, R., Cheng Wong, H., Tan, C-H., Wu, J., Cabral, J.T., and Durrant, J.R.: Toward improved lifetimes of organic solar cells under thermal stress: Substrate-dependent morphological stability of PCDTBT:PCBM films and devices. Sci. Rep. 5, 15149 (2015).Google Scholar
Kingsley, J.W., Marchisio, P.P., Yi, H., Iraqi, A., Kinane, C.J., Langridge, S., Thompson, R.L., Cadby, A.J., Pearson, A.J., Lidzey, D.G., Jones, R.A.L., and Parnell, A.J.: Molecular weight dependent vertical composition profiles of PCDTBT:PC(71)BM blends for organic photovoltaics. Sci. Rep. 4, 5286 (2014).Google Scholar
Katsouras, A., Gasparini, N., Koulogiannis, C., Spanos, M., Ameri, T., Brabec, C.J., Chochos, C.L., and Avgeropoulos, A.: Systematic analysis of polymer molecular weight influence on the organic photovoltaic performance. Macromol. Rapid Commun. 36, 17781797 (2015).Google Scholar
Cheng, P., Yan, C., Wu, Y., Wang, J., Qin, M., An, Q., Cao, J., Huo, L., Zhang, F., Ding, L., Sun, Y., Ma, W., and Zhan, X.: Alloy acceptor: Superior alternative to PCBM toward efficient and stable organic solar cells. Adv. Mater. 28, 80218028 (2016).Google Scholar
Mateker, W.R., Sachs-Quintana, I.T., Burkhard, G.F., Cheacharoen, R., and McGehee, M.D.: Minimal long-term intrinsic degradation observed in a polymer solar cell illuminated in an oxygen-free environment. Chem. Mater. 27, 404407 (2015).Google Scholar
Alem, S., Chu, T-Y., Tse, S.C., Wakim, S., Lu, J., Movileanu, R., Tao, Y., Bélanger, F., Désilets, D., Beaupré, S., Leclerc, M., Rodman, S., Waller, D., and Gaudiana, R.: Effect of mixed solvents on PCDTBT:PC70BM based solar cells. Org. Electron. 12, 17881793 (2011).Google Scholar
Shin, P-K., Kumar, P., Kumar, A., Kannappan, S., and Ochiai, S.: Effects of organic solvents for composite active layer of PCDTBT/PC71BM on characteristics of organic solar cell devices. Int. J. Photoenergy 2014, 8 (2014).CrossRefGoogle Scholar
Ciammaruchi, L., Brunetti, F., and Visoly-Fisher, I.: Solvent effects on the morphology and stability of PTB7:PCBM based solar cells. Sol. Energy 137(Suppl. C), 490499 (2016).Google Scholar
Fang, G., Liu, J., Fu, Y., Meng, B., Zhang, B., Xie, Z., and Wang, L.: Improving the nanoscale morphology and processibility for PCDTBT-based polymer solar cells via solvent mixtures. Org. Electron. 13, 27332740 (2012).Google Scholar
Peters, C.H., Sachs-Quintana, I.T., Mateker, W.R., Heumueller, T., Rivnay, J., Noriega, R., Beiley, Z.M., Hoke, E.T., Salleo, A., and McGehee, M.D.: The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv. Mater. 24, 663668 (2012).Google Scholar
Kong, J., Song, S., Yoo, M., Lee, G.Y., Kwon, O., Park, J.K., Back, H., Kim, G., Lee, S.H., Suh, H., and Lee, K.: Long-term stable polymer solar cells with significantly reduced burn-in loss. Nat. Commun. 5, 5688 (2014).Google Scholar
Roesch, R., Eberhardt, K-R., Engmann, S., Gobsch, G., and Hoppe, H.: Polymer solar cells with enhanced lifetime by improved electrode stability and sealing. Sol. Energy Mater. Sol. Cells 117(Suppl. C), 5966 (2013).Google Scholar
Zhang, Y., Bovill, E., Kingsley, J., Buckley, A.R., Yi, H., Iraqi, A., Wang, T., and Lidzey, D.G.: PCDTBT based solar cells: One year of operation under real-world conditions. Sci. Rep. 6, 21632 (2016).Google Scholar
Adams, J., Salvador, M., Lucera, L., Langner, S., Spyropoulos, G.D., Fecher, F.W., Voigt, M.M., Dowland, S.A., Osvet, A., Egelhaaf, H-J., and Brabec, C.J.: Water ingress in encapsulated inverted organic solar cells: Correlating infrared imaging and photovoltaic performance. Adv. Energy Mater. 5, 1501065 (2015).Google Scholar
Turkovic, V., Engmann, S., Egbe, D.A.M., Himmerlich, M., Krischok, S., Gobsch, G., and Hoppe, H.: Multiple stress degradation analysis of the active layer in organic photovoltaics. Sol. Energy Mater. Sol. Cells 120(Part B), 654668 (2014).Google Scholar
Voroshazi, E., Cardinaletti, I., Conard, T., and Rand, B.P.: Light-induced degradation of polymer:fullerene photovoltaic devices: An intrinsic or material-dependent failure mechanism? Adv. Energy Mater. 4, 1400848 (2014).Google Scholar
Reese, M.O., Gevorgyan, S.A., Jørgensen, M., Bundgaard, E., Kurtz, S.R., Ginley, D.S., Olson, D.C., Lloyd, M.T., Morvillo, P., Katz, E.A., Elschner, A., Haillant, O., Currier, T.R., Shrotriya, V., Hermenau, M., Riede, M., Kirov, K.R., Trimmel, G., Rath, T., Inganäs, O., Zhang, F., Andersson, M., Tvingstedt, K., Lira-Cantu, M., Laird, D., McGuiness, C., Gowrisanker, S., Pannone, M., Xiao, M., Hauch, J., Steim, R., DeLongchamp, D.M., Rösch, R., Hoppe, H., Espinosa, N., Urbina, A., Yaman-Uzunoglu, G., Bonekamp, J-B., van Breemen, A.J.J.M., Girotto, C., Voroshazi, E., and Krebs, F.C.: Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells 95, 12531267 (2011).Google Scholar
Kettle, J., Bristow, N., Gethin, D.T., Tehrani, Z., Moudam, O., Li, B., Katz, E.A., dos Reis Benatto, G.A., and Krebs, F.C.: Printable luminescent down shifter for enhancing efficiency and stability of organic photovoltaics. Sol. Energy Mater. Sol. Cells 144(Suppl. C), 481487 (2016).Google Scholar
Burlingame, Q., Zanotti, G., Ciammaruchi, L., Katz, E.A., and Forrest, S.R.: Outdoor operation of small-molecule organic photovoltaics. Org. Electron. 41(Suppl. C), 274279 (2017).Google Scholar
Gevorgyan, S.A., Espinosa, N., Ciammaruchi, L., Roth, B., Livi, F., Tsopanidis, S., Zufle, S., Queiros, S., Gregori, A., Benatto, G.A.D., Corazza, M., Madsen, M.V., Hosel, M., Beliatis, M.J., Larsen-Olsen, T.T., Pastorelli, F., Castro, A., Mingorance, A., Lenzi, V., Fluhr, D., Roesch, R., Ramos, M.M.D., Savva, A., Hoppe, H., Marques, L.S.A., Burgues, I., Georgiou, E., Serrano-Lujan, L., and Krebs, F.C.: Baselines for lifetime of organic solar cells. Adv. Energy Mater. 6, 1600910 (2016).Google Scholar
Gevorgyan, S.A., Madsen, M.V., Roth, B., Corazza, M., Hösel, M., Søndergaard, R.R., Jørgensen, M., and Krebs, F.C.: Lifetime of organic photovoltaics: Status and predictions. Adv. Energy Mater. 6, 1501208 (2016).Google Scholar
Son, H.J., Carsten, B., Jung, I.H., and Yu, L.: Overcoming efficiency challenges in organic solar cells: Rational development of conjugated polymers. Energy Environ. Sci. 5, 81588170 (2012).Google Scholar
Zen, A., Pflaum, J., Hirschmann, S., Zhuang, W., Jaiser, F., Asawapirom, U., Rabe, J.P., Scherf, U., and Neher, D.: Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv. Funct. Mater. 14, 757764 (2004).Google Scholar
Ma, W., Kim, J.Y., Lee, K., and Heeger, A.J.: Effect of the molecular weight of poly(3-hexylthiophene) on the morphology and performance of polymer bulk heterojunction solar cells. Macromol. Rapid Commun. 28, 17761780 (2007).Google Scholar
Koppe, M., Brabec, C.J., Heiml, S., Schausberger, A., Duffy, W., Heeney, M., and McCulloch, I.: Influence of molecular weight distribution on the gelation of P3HT and its impact on the photovoltaic performance. Macromolecules 42, 46614666 (2009).Google Scholar
Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J.S., Frechet, J.M.J., and Toney, M.F.: Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38, 33123319 (2005).Google Scholar
Ding, Z., Kettle, J., Horie, M., Chang, S.W., Smith, G.C., Shames, A.I., and Katz, E.A.: Efficient solar cells are more stable: The impact of polymer molecular weight on performance of organic photovoltaics. J. Mater. Chem. A 4, 72747280 (2016).Google Scholar
Frolova, L.A., Piven, N.P., Susarova, D.K., Akkuratov, A.V., Babenko, S.D., and Troshin, P.A.: ESR spectroscopy for monitoring the photochemical and thermal degradation of conjugated polymers used as electron donor materials in organic bulk heterojunction solar cells. Chem. Commun. 51, 22422244 (2015).Google Scholar
Susarova, D.K., Piven, N.P., Akkuratov, A.V., Frolova, L.A., Polinskaya, M.S., Ponomarenko, S.A., Babenko, S.D., and Troshin, P.A.: ESR spectroscopy as a powerful tool for probing the quality of conjugated polymers designed for photovoltaic applications. Chem. Commun. 51, 22392241 (2015).CrossRefGoogle ScholarPubMed
Shames, A.I., Inasaridze, L.N., Akkuratov, A.V., Goryachev, A.E., Katz, E.A., and Troshin, P.A.: Assessing the outdoor photochemical stability of conjugated polymers by EPR spectroscopy. J. Mater. Chem. A 4, 1316613170 (2016).Google Scholar
Glen, T.S., Scarratt, N.W., Yi, H., Iraqi, A., Wang, T., Kingsley, J., Buckley, A.R., Lidzey, D.G., and Donald, A.M.: Dependence on material choice of degradation of organic solar cells following exposure to humid air. J. Polym. Sci., Part B: Polym. Phys. 54, 216224 (2016).Google Scholar
Paci, B., Generosi, A., Rossi Albertini, V., Perfetti, P., de Bettignies, R., and Sentein, C.: Time-resolved morphological study of organic thin film solar cells based on calcium/aluminium cathode material. Chem. Phys. Lett. 461, 7781 (2008).Google Scholar
Liu, Z.Y., Tian, M.M., and Wang, N.: Influences of Alq3 as electron extraction layer instead of Ca on the photo-stability of organic solar cells. J. Power Sources 250, 105109 (2014).Google Scholar
Cros, S., Firon, M., Lenfant, S., Trouslard, P., and Beck, L.: Study of thin calcium electrode degradation by ion beam analysis. Nucl. Instrum. Methods Phys. Res., Sect. B 251, 257260 (2006).Google Scholar
Glen, T.S., Scarratt, N.W., Yi, H., Iraqi, A., Wang, T., Kingsley, J., Buckley, A.R., Lidzey, D.G., and Donald, A.M.: Grain size dependence of degradation of aluminium/calcium cathodes in organic solar cells following exposure to humid air. Sol. Energy Mater. Sol. Cells 140(Suppl. C), 2532 (2015).Google Scholar
Lloyd, M.T., Olson, D.C., Lu, P., Fang, E., Moore, D.L., White, M.S., Reese, M.O., Ginley, D.S., and Hsu, J.W.P.: Impact of contact evolution on the shelf life of organic solar cells. J. Mater. Chem. 19, 76387642 (2009).Google Scholar
Karst, N. and Bernède, J.C.: On the improvement of the open circuit voltage of plastic solar cells by the presence of a thin aluminium oxide layer at the interface organic/aluminium. Phys. Status Solidi A 203, R70R72 (2006).Google Scholar
Lloyd, M.T., Peters, C.H., Garcia, A., Kauvar, I.V., Berry, J.J., Reese, M.O., McGehee, M.D., Ginley, D.S., and Olson, D.C.: Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics. Sol. Energy Mater. Sol. Cells 95, 13821388 (2011).Google Scholar
Tanenbaum, D.M., Dam, H.F., Roesch, R., Jorgensen, M., Hoppe, H., and Krebs, F.C.: Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules. Sol. Energy Mater. Sol. Cells 97, 157163 (2012).Google Scholar
Zhang, Y.W., Bovill, E., Kingsley, J., Buckley, A.R., Yi, H.N., Iraqi, A., Wang, T., and Lidzey, D.G.: PCDTBT based solar cells: One year of operation under real-world conditions. Sci. Rep. 6, 21632 (2016).Google Scholar
Tournebize, A., Bussiere, P.O., Wong-Wah-Chung, P., Therias, S., Rivaton, A., Gardette, J.L., Beaupre, S., and Leclerc, M.: Impact of UV-visible light on the morphological and photochemical behavior of a low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Energy Mater. 3, 478487 (2013).CrossRefGoogle Scholar
Tournebize, A., Rivaton, A., Gardette, J-L., Lombard, C., Pepin-Donat, B., Beaupre, S., and Leclerc, M.: How photoinduced crosslinking under operating conditions can reduce PCDTBT-based solar cell efficiency and then stabilize it. Adv. Energy Mater. 4, 1 (2014).Google Scholar
Inasaridze, L.N., Shames, A.I., Martynov, I.V., Li, B., Mumyatov, A.V., Susarova, D.K., Katz, E.A., and Troshin, P.A.: Light-induced generation of free radicals by fullerene derivatives: An important degradation pathway in organic photovoltaics? J. Mater. Chem. A 5, 80448050 (2017).Google Scholar
Li, Z., Chiu, K.H., Ashraf, R.S., Fearn, S., Dattani, R., Wong, H.C., Tan, C.H., Wu, J.Y., Cabral, J.T., and Durrant, J.R.: Toward improved lifetimes of organic solar cells under thermal stress: Substrate-dependent morphological stability of PCDTBT:PCBM films and devices. Sci. Rep. 5, 15149 (2015).Google Scholar
Voroshazi, E., Verreet, B., Buri, A., Mueller, R., Di Nuzzo, D., and Heremans, P.: Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells. Org. Electron. 12, 736744 (2011).Google Scholar
Nair, S., Kathiresan, M., Mukundan, T., and Natarajan, V.: Passivation of organic field effect transistor with photopatterned Parylene to improve environmental stability. Microelectron. Eng. 163, 3642 (2016).Google Scholar
Giannouli, M., Drakonakis, V.M., Savva, A., Eleftheriou, P., Florides, G., and Choulis, S.A.: Methods for improving the lifetime performance of organic photovoltaics with low-costing encapsulation. ChemPhysChem 16, 11341154 (2015).CrossRefGoogle ScholarPubMed
Won Lim, J., Kyu Jin, C., Yong Lim, K., Jae Lee, Y., Kim, S-R., Choi, B-I., Whan Kim, T., Ha Kim, D., Kyung Hwang, D., and Kook Choi, W.: Transparent high-performance SiOxNy/SiOx barrier films for organic photovoltaic cells with high durability. Nano Energy 33(Suppl. C), 1220 (2017).Google Scholar
Dollinger, F., Nehm, F., Müller-Meskamp, L., and Leo, K.: Laminated aluminum thin-films as low-cost opaque moisture ultra-barriers for flexible organic electronic devices. Org. Electron. 46(Suppl. C), 242246 (2017).Google Scholar
Morlier, A., Cros, S., Garandet, J-P., and Alberola, N.: Gas barrier properties of solution processed composite multilayer structures for organic solar cells encapsulation. Sol. Energy Mater. Sol. Cells 115(Suppl. C), 9399 (2013).CrossRefGoogle Scholar
Nam, T., Park, Y.J., Lee, H., Oh, I-K., Ahn, J-H., Cho, S.M., Kim, H., and Lee, H-B-R.: A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon 116(Suppl. C), 553561 (2017).Google Scholar
Cheng, P. and Zhan, X.W.: Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 45, 25442582 (2016).Google Scholar
Salvador, M., Gasparini, N., Perea, J.D., Paleti, S.H., Distler, A., Inasaridze, L.N., Troshin, P.A., Luer, L., Egelhaaf, H-J., and Brabec, C.: Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 20052016 (2017).Google Scholar
Turkovic, V., Engmann, S., Tsierkezos, N., Hoppe, H., Madsen, M., Rubahn, H-G., Ritter, U., and Gobsch, G.: Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives. Appl. Phys. A 122, 16 (2016).Google Scholar
Turkovic, V., Engmann, S., Tsierkezos, N., Hoppe, H., Ritter, U., and Gobsch, G.: Long-term stabilization of organic solar cells using hindered phenols as additives. ACS Appl. Mater. Interfaces 6, 1852518537 (2014).Google Scholar
Turkovic, V., Engmann, S., Tsierkezos, N.G., Hoppe, H., Madsen, M., Rubahn, H.G., Ritter, U., and Gobsch, G.: Long-term stabilization of organic solar cells using UV absorbers. J. Phys. D: Appl. Phys. 49, 125604 (2016).Google Scholar
Supplementary material: File

Ciammaruchi et al. supplementary material

Figures S1-S2 and Tables S1-S5

Download Ciammaruchi et al. supplementary material(File)
File 8.2 MB