Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T12:56:40.135Z Has data issue: false hasContentIssue false

Size effects on plasticity in high-entropy alloys

Published online by Cambridge University Press:  20 August 2018

Indranil Basu*
Affiliation:
Department of Applied Physics, Zernike Institute for Advanced Materials and Materials Innovation Institute, University of Groningen, Groningen 9747AG, The Netherlands
Václav Ocelík
Affiliation:
Department of Applied Physics, Zernike Institute for Advanced Materials and Materials Innovation Institute, University of Groningen, Groningen 9747AG, The Netherlands
Jeff Th. M. De Hosson
Affiliation:
Department of Applied Physics, Zernike Institute for Advanced Materials and Materials Innovation Institute, University of Groningen, Groningen 9747AG, The Netherlands
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The current review outlines the size-dependent plastic behavior of high-entropy alloys (HEAs) and the underlying deformation mechanisms. Particular focus is laid upon the influence of microstructural design on the small-scale deformation characteristics. The role of defect types as carriers of plasticity is appraised and correlated with the frequently observed mechanical behavior peculiar to the breed of HEAs. Deformation response is classified on the basis of mechanical testing techniques probing intrinsic (nanoindentation techniques) as well as extrinsic size (micro/nanopillar compression) effects. The mechanisms of incipient plasticity and serrated flow behavior in HEAs are discussed. Furthermore, the role of interfaces between crystallographically dissimilar lattices on small-scale deformation behavior in these alloys is assessed. The article provides a clear overview of the existing HEA research in this avenue as well as the critical knowledge gaps that need to be addressed.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Huang, P-K., Yeh, J-W., Shun, T-T., and Chen, S-K.: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377(Suppl. C), 213 (2004).CrossRefGoogle Scholar
Praveen, S. and Kim, H.S.: High-entropy alloys: Potential candidates for high-temperature applications—An overview. Adv. Eng. Mater. 20, 1700645 (2018).CrossRefGoogle Scholar
Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122(Suppl. C), 448 (2017).CrossRefGoogle Scholar
Miracle, D.B.: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 1142 (2015).CrossRefGoogle Scholar
Martyushev, L.M. and Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1 (2006).CrossRefGoogle Scholar
Gao, M.C., Zhang, C., Gao, P., Zhang, F., Ouyang, L.Z., Widom, M., and Hawk, J.A.: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238 (2017).CrossRefGoogle Scholar
Zhang, W., Liaw, P.K., and Zhang, Y.: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).CrossRefGoogle Scholar
Carroll, R., Lee, C., Tsai, C-W., Yeh, J-W., Antonaglia, J., Brinkman, B.A.W., LeBlanc, M., Xie, X., Chen, S., Liaw, P.K., and Dahmen, K.A.: Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys. Sci. Rep. 5, 16997 (2015).CrossRefGoogle ScholarPubMed
Yeh, J-W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).CrossRefGoogle Scholar
Yeh, J-W.: Physical metallurgy of high-entropy alloys. JOM 67, 2254 (2015).CrossRefGoogle Scholar
Yeh, J-W., Lin, S-J., Chin, T-S., Gan, J-Y., Chen, S-K., Shun, T-T., Tsau, C-H., and Chou, S-Y.: Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533 (2004).CrossRefGoogle Scholar
Gao, M.C., Yeh, J-W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications (Springer, New York, NY, 2016).CrossRefGoogle Scholar
Wang, W-R., Wang, W-L., Wang, S-C., Tsai, Y-C., Lai, C-H., and Yeh, J-W.: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26(Suppl. C), 44 (2012).CrossRefGoogle Scholar
Zhang, Z.J., Mao, M.M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S.X., George, E.P., Yu, Q., and Ritchie, R.O.: Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 10143 (2015).CrossRefGoogle ScholarPubMed
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
Rao, J.C., Diao, H.Y., Ocelík, V., Vainchtein, D., Zhang, C., Kuo, C., Tang, Z., Guo, W., Poplawsky, J.D., Zhou, Y., Liaw, P.K., and De Hosson, J.T.M.: Secondary phases in AlxCoCrFeNi high-entropy alloys: An in situ TEM heating study and thermodynamic appraisal. Acta Mater. 131(Suppl. C), 206 (2017).CrossRefGoogle Scholar
Diao, H.Y., Feng, R., Dahmen, K.A., and Liaw, P.K.: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252 (2017).CrossRefGoogle Scholar
Tang, Z., Senkov, O.N., Parish, C.M., Zhang, C., Zhang, F., Santodonato, L.J., Wang, G., Zhao, G., Yang, F., and Liaw, P.K.: Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng., A 647(Suppl. C), 229 (2015).CrossRefGoogle Scholar
Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys for structural applications. Calphad 50(Suppl. C), 32 (2015).CrossRefGoogle Scholar
Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).CrossRefGoogle ScholarPubMed
Gali, A. and George, E.P.: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61(Suppl. C), 1 (2014).CrossRefGoogle Scholar
Gorsse, S., Miracle, D.B., and Senkov, O.N.: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).CrossRefGoogle Scholar
Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
Murty, B.S., Yeh, J-W., and Ranganathan, S.: High-Entropy Alloys (Butterworth-Heinemann, Amsterdam, Netherlands, 2014).CrossRefGoogle Scholar
Yeh, J.W., Chen, Y.L., Lin, S.J., and Chen, S.K.: High-entropy alloys—A new era of exploitation. Mater. Sci. Forum 560, 1 (2007).CrossRefGoogle Scholar
Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).CrossRefGoogle Scholar
Jones, N.G., Christofidou, K.A., and Stone, H.J.: Rapid precipitation in an Al0.5CrFeCoNiCu high entropy alloy. Mater. Sci. Technol. 31, 1171 (2015).CrossRefGoogle Scholar
Jones, N.G., Aveson, J.W., Bhowmik, A., Conduit, B.D., and Stone, H.J.: On the entropic stabilisation of an Al0.5CrFeCoNiCu high entropy alloy. Intermetallics 54, 148 (2014).CrossRefGoogle Scholar
Jones, N.G., Frezza, A., and Stone, H.J.: Phase equilibria of an Al0.5CrFeCoNiCu high entropy alloy. Mater. Sci. Eng., A 615, 214 (2014).CrossRefGoogle Scholar
Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100(Suppl. C), 90 (2015).CrossRefGoogle Scholar
Pradeep, K.G., Wanderka, N., Choi, P., Banhart, J., Murty, B.S., and Raabe, D.: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater. 61, 4696 (2013).CrossRefGoogle Scholar
Praveen, S., Murty, B.S., and Kottada, R.S.: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534(Suppl. C), 83 (2012).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Pradeep, K.G., Kuběnová, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112(Suppl. C), 40 (2016).CrossRefGoogle Scholar
Pickering, E.J., Stone, H.J., and Jones, N.G.: Fine-scale precipitation in the high-entropy alloy Al0.5CrFeCoNiCu. Mater. Sci. Eng., A 645(Suppl. C), 65 (2015).CrossRefGoogle Scholar
Pickering, E.J., Muñoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113(Suppl. C), 106 (2016).CrossRefGoogle Scholar
Basu, I., Ocelík, V., and De Hosson, J.T.M.: Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys. Acta Mater. 150, 104 (2018).CrossRefGoogle Scholar
Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J.K., Neuefeind, J.C., Tang, Z., and Liaw, P.K.: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).CrossRefGoogle ScholarPubMed
Deng, Y., Tasan, C.C., Pradeep, K.G., Springer, H., Kostka, A., and Raabe, D.: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015).CrossRefGoogle Scholar
Li, Z., Tasan, C.C., Pradeep, K.G., and Raabe, D.: A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131(Suppl. C), 323 (2017).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Nene, S.S., Liu, K., Frank, M., Mishra, R.S., Brennan, R.E., Cho, K.C., Li, Z., and Raabe, D.: Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Sci. Rep. 7, 16167 (2017).CrossRefGoogle Scholar
Wang, M., Li, Z., and Raabe, D.: In situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy. Acta Mater. 147, 236 (2018).CrossRefGoogle Scholar
Ma, Y., Wang, Q., Jiang, B.B., Li, C.L., Hao, J.M., Li, X.N., Dong, C., and Nieh, T.G.: Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Mater. 147, 213 (2018).CrossRefGoogle Scholar
Zhao, Y.L., Yang, T., Zhu, J.H., Chen, D., Yang, Y., Hu, A., Liu, C.T., and Kai, J-J.: Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr. Mater. 148, 51 (2018).CrossRefGoogle Scholar
He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
Rao, J.C., Ocelík, V., Vainchtein, D., Tang, Z., Liaw, P.K., and De Hosson, J.T.M.: The fcc-bcc crystallographic orientation relationship in AlxCoCrFeNi high-entropy alloys. Mater. Lett. 176(Suppl. C), 29 (2016).CrossRefGoogle Scholar
Rao, J.C., Ocelík, V., Vainchtein, D., Tang, Z., Liaw, P.K., and De Hosson, J.T.M.: On the onset of nano-ordered phase distributions in high-entropy alloys. Rev. Adv. Mater. Sci. 48, 105 (2017).Google Scholar
Ocelík, V., Janssen, N., Smith, S.N., and Hosson, J.T.M.D.: Additive manufacturing of high-entropy alloys by laser processing. JOM 68, 1810 (2016).CrossRefGoogle Scholar
Manzoni, A., Daoud, H., Völkl, R., Glatzel, U., and Wanderka, N.: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132(Suppl. C), 212 (2013).CrossRefGoogle ScholarPubMed
Munitz, A., Salhov, S., Hayun, S., and Frage, N.: Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloy. Comp. 683(Suppl. C), 221 (2016).CrossRefGoogle Scholar
Ma, Y., Jiang, B., Li, C., Wang, Q., Dong, C., Liaw, P.K., Xu, F., and Sun, L.: The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys. Metals 7, 57 (2017).CrossRefGoogle Scholar
Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).CrossRefGoogle Scholar
Zou, Y., Ma, H., and Spolenak, R.: Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015).CrossRefGoogle ScholarPubMed
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Gludovatz, B., Hohenwarter, A., Thurston, K.V.S., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).CrossRefGoogle ScholarPubMed
Feuerbacher, M., Heidelmann, M., and Thomas, C.: Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1 (2015).CrossRefGoogle Scholar
Tracy, C.L., Park, S., Rittman, D.R., Zinkle, S.J., Bei, H., Lang, M., Ewing, R.C., and Mao, W.L.: High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 8, 15634 (2017).CrossRefGoogle ScholarPubMed
Gao, M.C., Zhang, B., Guo, S.M., Qiao, J.W., and Hawk, J.A.: High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 47, 3322 (2016).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
Laplanche, G., Kostka, A., Horst, O.M., Eggeler, G., and George, E.P.: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118(Suppl. C), 152 (2016).CrossRefGoogle Scholar
Zhang, Y.H., Zhuang, Y., Hu, A., Kai, J.J., and Liu, C.T.: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scr. Mater. 130, 96 (2017).CrossRefGoogle Scholar
Basu, I., Fidder, H., Ocelík, V., and de Hosson, J.T.M.: Local stress states and microstructural damage response associated with deformation twins in hexagonal close packed metals. Crystals 8, 1 (2017).CrossRefGoogle Scholar
Basu, I. and Al-Samman, T.: Twin recrystallization mechanisms in magnesium-rare earth alloys. Acta Mater. 96, 111 (2015).CrossRefGoogle Scholar
Basu, I., Gottstein, G., and Zander, B.D.: Recrystallization mechanisms in wrought magnesium alloys containing rare-earth elements. Dissertation, RWTH Aachen University, Aachen, Germany, 2016, 2017.Google Scholar
Zhang, Z., Sheng, H., Wang, Z., Gludovatz, B., Zhang, Z., George, E.P., Yu, Q., Mao, S.X., and Ritchie, R.O.: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun. 8, 14390 (2017).CrossRefGoogle ScholarPubMed
Haase, C. and Barrales-Mora, L.A.: Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys. Acta Mater. 150, 88 (2018).CrossRefGoogle Scholar
Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).CrossRefGoogle Scholar
Couzinié, J-P., Lilensten, L., Champion, Y., Dirras, G., Perrière, L., and Guillot, I.: On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Mater. Sci. Eng., A 645, 255 (2015).CrossRefGoogle Scholar
Dirras, G., Gubicza, J., Heczel, A., Lilensten, L., Couzinié, J-P., Perrière, L., Guillot, I., and Hocini, A.: Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Mater. Charact. 108, 1 (2015).CrossRefGoogle Scholar
Dirras, G., Lilensten, L., Djemia, P., Laurent-Brocq, M., Tingaud, D., Couzinié, J-P., Perrière, L., Chauveau, T., and Guillot, I.: Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater. Sci. Eng., A 654, 30 (2016).CrossRefGoogle Scholar
Feuerbacher, M.: Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy. Sci. Rep. 6, 29700 (2016).CrossRefGoogle Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 4062 (2012).CrossRefGoogle Scholar
Lilensten, L., Couzinié, J-P., Bourgon, J., Perrière, L., Dirras, G., Prima, F., and Guillot, I.: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater. Res. Lett. 5, 110 (2017).CrossRefGoogle Scholar
Joseph, J., Stanford, N., Hodgson, P., and Fabijanic, D.M.: Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. J. Alloy. Comp. 726, 885 (2017).CrossRefGoogle Scholar
Giwa, A.M., Liaw, P.K., Dahmen, K.A., and Greer, J.R.: Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi high entropy alloy. Extreme Mech. Lett. 8(Suppl. C), 220 (2016).CrossRefGoogle Scholar
Raghavan, R., Kirchlechner, C., Jaya, B.N., Feuerbacher, M., and Dehm, G.: Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy. Scr. Mater. 129, 52 (2017).CrossRefGoogle Scholar
Zou, Y., Maiti, S., Steurer, W., and Spolenak, R.: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).CrossRefGoogle Scholar
Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M.T., Matsunoshita, H., Tanaka, K., Inui, H., and George, E.P.: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863 (2016).CrossRefGoogle ScholarPubMed
Jiao, Q., Sim, G-D., Komarasamy, M., Mishra, R.S., Liaw, P.K., and El-Awady, J.A.: Thermo-mechanical response of single-phase face-centered-cubic AlxCoCrFeNi high-entropy alloy microcrystals. Mater. Res. Lett. 6, 300 (2018).CrossRefGoogle Scholar
He, Q.F., Zeng, J.F., Wang, S., Ye, Y.F., Zhu, C., Nieh, T.G., Lu, Z.P., and Yang, Y.: Delayed plasticity during nanoindentation of single-phase CoCrFeMnNi high-entropy alloy. Mater. Res. Lett. 5, 300 (2017).CrossRefGoogle Scholar
Wang, L., Bei, H., Li, T.L., Gao, Y.F., George, E.P., and Nieh, T.G.: Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic Mo and face-centered cubic Ni single crystals. Scr. Mater. 65, 179 (2011).CrossRefGoogle Scholar
Wu, D., Jang, J.S.C., and Nieh, T.G.: Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method. Intermetallics 68, 118 (2016).CrossRefGoogle Scholar
Mridha, S., Das, S., Aouadi, S., Mukherjee, S., and Mishra, R.S.: Nanomechanical behavior of CoCrFeMnNi high-entropy alloy. JOM 67, 2296 (2015).CrossRefGoogle Scholar
Lee, D-H., Seok, M-Y., Zhao, Y., Choi, I-C., He, J., Lu, Z., Suh, J-Y., Ramamurty, U., Kawasaki, M., Langdon, T.G., and Jang, J.: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 109, 314 (2016).CrossRefGoogle Scholar
Ganji, R.S., Sai Karthik, P., Bhanu Sankara Rao, K., and Rajulapati, K.V.: Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 125, 58 (2017).CrossRefGoogle Scholar
Ye, Y.X., Lu, Z.P., and Nieh, T.G.: Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scr. Mater. 130(Suppl. C), 64 (2017).CrossRefGoogle Scholar
Zhu, C., Lu, Z.P., and Nieh, T.G.: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).CrossRefGoogle Scholar
Yu, L., Chen, S., Ren, J., Ren, Y., Yang, F., Dahmen, K.A., and Liaw, P.K.: Plasticity performance of Al0.5CoCrCuFeNi high-entropy alloys under nanoindentation. J. Iron Steel Res. Int. 24, 390 (2017).CrossRefGoogle Scholar
Jiao, Z-M., Ma, S-G., Yuan, G-Z., Wang, Z-H., Yang, H-J., and Qiao, J-W.: Plastic deformation of Al0.3CoCrFeNi and AlCoCrFeNi high-entropy alloys under nanoindentation. J. Mater. Eng. Perform. 24, 3077 (2015).CrossRefGoogle Scholar
Sun, Y., Zhao, G., Wen, X., Qiao, J., and Yang, F.: Nanoindentation deformation of a bi-phase AlCrCuFeNi2 alloy. J. Alloy. Comp. 608, 49 (2014).CrossRefGoogle Scholar
Jiao, Z.M., Chu, M.Y., Yang, H.J., Wang, Z.H., and Qiao, J.W.: Nanoindentation characterised plastic deformation of a Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Technol. 31, 1244 (2015).CrossRefGoogle Scholar
Chen, S., Yu, L., Ren, J., Xie, X., Li, X., Xu, Y., Zhao, G., Li, P., Yang, F., Ren, Y., and Liaw, P.K.: Self-similar random process and chaotic behavior in serrated flow of high entropy alloys. Sci. Rep. 6, 29798 (2016).CrossRefGoogle ScholarPubMed
Basu, I., Ocelík, V., and De Hosson, J.T.M.: BCC -FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys. Acta Mate. 157, 83 (2018).CrossRefGoogle Scholar
Shen, Z., Wagoner, R.H., and Clark, W.A.T.: Dislocation and grain boundary interactions in metals. Acta Metall. 36, 3231 (1988).CrossRefGoogle Scholar
Clark, W.A.T., Wagoner, R.H., Shen, Z.Y., Lee, T.C., Robertson, I.M., and Birnbaum, H.K.: On the criteria for slip transmission across interfaces in polycrystals. Scripta Metall. Mater. 26, 203 (1992).CrossRefGoogle Scholar
Lund, A.C., Schuh, C.A., and Mason, J.K.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).Google Scholar
Mason, J.K., Lund, A.C., and Schuh, C.A.: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006).CrossRefGoogle Scholar
Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, England, 1987).Google Scholar
Morris, J.R., Bei, H., Pharr, G.M., and George, E.P.: Size effects and stochastic behavior of nanoindentation pop In. Phys. Rev. Lett. 106, 165502 (2011).CrossRefGoogle ScholarPubMed
Soer, W.A., De Hosson, J.T.M., Minor, A.M., Shan, Z., Syed Asif, S.A., and Warren, O.L.: Incipient plasticity in metallic thin films. Appl. Phys. Lett. 90, 181924 (2007).CrossRefGoogle Scholar
Soer, W.A., Hosson, J.T.M.D., Minor, A.M., Morris, J.W., and Stach, E.A.: Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater. 52, 5783 (2004).CrossRefGoogle Scholar
Hosson, J.T.M.D., Soer, W.A., Minor, A.M., Shan, Z., Stach, E.A., Asif, S.A.S., and Warren, O.L.: In situ TEM nanoindentation and dislocation-grain boundary interactions: A tribute to david brandon. J. Mater. Sci. 41, 7704 (2006).CrossRefGoogle Scholar
Zhu, T., Li, J., Samanta, A., Kim, H.G., and Suresh, S.: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. U. S. A. 104, 3031 (2007).CrossRefGoogle ScholarPubMed
Conrad, H.: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).CrossRefGoogle Scholar
Zhang, Y., Liu, J.P., Chen, S.Y., Xie, X., Liaw, P.K., Dahmen, K.A., Qiao, J.W., and Wang, Y.L.: Serration and noise behaviors in materials. Prog. Mater. Sci. 90(Suppl. C), 358 (2017).CrossRefGoogle Scholar
Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
Dubois, J-M.: Complex metallic alloys: Clarity through complexity. Nat. Mater. 9, 287 (2010).CrossRefGoogle ScholarPubMed
Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).CrossRefGoogle Scholar
van den Beukel, A.: Theory of the effect of dynamic strain aging on mechanical properties. Phys. Status Solidi A 30, 197 (1975).CrossRefGoogle Scholar
Mulford, R.A. and Kocks, U.F.: New observations on the mechanisms of dynamic strain aging and of jerky flow. Acta Metall. 27, 1125 (1979).CrossRefGoogle Scholar
Rodriguez, P.: Serrated plastic flow. Bull. Mater. Sci. 6, 653 (1984).CrossRefGoogle Scholar
Gottstein, G.: Physical Foundations of Materials Science (Springer Science & Business Media, Berlin/Heidelberg, Germany, 2013).Google Scholar
Brechet, Y. and Estrin, Y.: On the influence of precipitation on the Portevin–Le Chatelier effect. Acta Metall. Mater. 43, 955 (1995).CrossRefGoogle Scholar
Antonaglia, J., Xie, X., Tang, Z., Tsai, C-W., Qiao, J.W., Zhang, Y., Laktionova, M.O., Tabachnikova, E.D., Yeh, J.W., Senkov, O.N., Gao, M.C., Uhl, J.T., Liaw, P.K., and Dahmen, K.A.: Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs). JOM 66, 2002 (2014).CrossRefGoogle Scholar
Laktionova, M.A., Tabchnikova, E.D., Tang, Z., and Liaw, P.K.: Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2–300K. Low Temp. Phys. 39, 630 (2013).CrossRefGoogle Scholar
Dahmen, K.A., Ben-Zion, Y., and Uhl, J.T.: Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett. 102, 175501 (2009).CrossRefGoogle ScholarPubMed
Dahmen, K., Ertaş, D., and Ben-Zion, Y.: Gutenberg-Richter and characteristic earthquake behavior in simple mean-field models of heterogeneous faults. Phys. Rev. E 58, 1494 (1998).CrossRefGoogle Scholar
Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
Basu, I. and Al-Samman, T.: Competitive twinning behavior in magnesium and its impact on recrystallization and texture formation. Mater. Sci. Eng., A 707(Suppl. C), 232 (2017).CrossRefGoogle Scholar
Drouven, C., Basu, I., Al-Samman, T., and Korte-Kerzel, S.: Twinning effects in deformed and annealed magnesium–neodymium alloys. Mater. Sci. Eng., A 647, 91 (2015).CrossRefGoogle Scholar
Basu, I. and Al-Samman, T.: Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater. 67, 116 (2014).CrossRefGoogle Scholar
Blewitt, T.H., Coltman, R.R., and Redman, J.K.: Low-temperature deformation of copper single crystals. J. Appl. Phys. 28, 651 (1957).CrossRefGoogle Scholar
Bolling, G.F. and Richman, R.H.: Continual mechanical twinning: Part I: Formal description. Acta Metall. 13, 709 (1965).CrossRefGoogle Scholar
Bolling, G.F. and Richman, R.H.: Continual mechanical twinning: Part II: Standard experiments. Acta Metall. 13, 723 (1965).CrossRefGoogle Scholar
Liang, Z.Y., De Hosson, J.T.M., and Huang, M.X.: Size effect on deformation twinning in face-centred cubic single crystals: Experiments and modelling. Acta Mater. 129, 1 (2017).CrossRefGoogle Scholar
De Cooman, B.C., Kim, J., and Lee, S.: Heterogeneous deformation in twinning-induced plasticity steel. Scr. Mater. 66, 986 (2012).CrossRefGoogle Scholar
Ahn, T-H., Oh, C-S., Kim, D.H., Oh, K.H., Bei, H., George, E.P., and Han, H.N.: Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scr. Mater. 63, 540 (2010).CrossRefGoogle Scholar
Soer, W.A., Aifantis, K.E., and De Hosson, J.T.M.: Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater. 53, 4665 (2005).CrossRefGoogle Scholar
Basu, I., Ocelík, V., and De Hosson, J.T.M.: Measurement of spatial stress gradients near grain boundaries. Scr. Mater. 136(Suppl. C), 11 (2017).CrossRefGoogle Scholar
Khalfallah, O., Condat, M., and Priester, L.: Image force on a lattice dislocation due to a grain boundary in b.c.c. metals. Philos. Mag. A 67, 231 (1993).CrossRefGoogle Scholar
Priester, L. and Khalfallah, O.: Image force on a lattice dislocation due to a grain boundary in anisotropic f.c.c. materials. Philos. Mag. A 69, 471 (1994).CrossRefGoogle Scholar
Hirth, J.P.: The influence of grain boundaries on mechanical properties. Metall. Trans. 3, 3047 (1972).CrossRefGoogle Scholar
Head, A.K.: X. The interaction of dislocations and boundaries. London, Edinburgh, and Dublin Phil. Mag. J. Sci. 44, 92 (1953).CrossRefGoogle Scholar
Basu, I., Ocelík, V., and De Hosson, J.T.M.: Experimental determination and theoretical analysis of local residual stress at grain scale. In WIT Transactions on Engineering Sciences, Northwood, D., Rang, T., De Hosson, J., and Brebbia, C.A., eds. (WIT Press, Southampton, U.K., 2017); pp. 314.Google Scholar
Tian, F., Delczeg, L., Chen, N., Varga, L.K., Shen, J., and Vitos, L.: Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).CrossRefGoogle Scholar