Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T17:17:21.845Z Has data issue: false hasContentIssue false

Refinement of Nd-422 Phase Trapped in a Nd1+δBa2−δCu3O7−y Superconducting Matrix

Published online by Cambridge University Press:  31 January 2011

F. Frangi
Affiliation:
ISTEC-SRL, 1-16-25, Shibaura, Minato-ku, Tokyo 105, Japan
S. I. Yoo
Affiliation:
ISTEC-SRL, 1-16-25, Shibaura, Minato-ku, Tokyo 105, Japan
N. Sakai
Affiliation:
ISTEC-SRL, 1-16-25, Shibaura, Minato-ku, Tokyo 105, Japan
M. Murakami
Affiliation:
ISTEC-SRL, 1-16-25, Shibaura, Minato-ku, Tokyo 105, Japan
Get access

Abstract

The possibility of controlling Nd-422 phase dimension and morphology, both in the partially melted state and in the final superconducting matrix, was investigated. Nd–Ba–Cu–O samples were prepared by the melt powder melt growth (MPMG) technique. Precursor materials containing Nd as either Nd2O3 or Nd-422, formed during precursor quenching, were used. The role of Pt in Nd-422 refining was analyzed. The effect on Nd-422 nucleation and growth, of stoichiometries with increasing Nd-422 molar excesses (0%, 10%, 20%, and 40%) combined with different heating processes, up to the partially melted state, were examined. Uniformly distributed needle-like particles (1 μm diameter and 10–15 μm length) were obtained at 1120 °C and resulted in a further refined distribution trapped in completely processed samples.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yoo, S. I., Sakai, N., Takaichi, H., Higuichi, T., and Murakami, M., Appl. Phys. Lett. 65 (5), 633 (1994).CrossRefGoogle Scholar
2.Yoo, S. I., Murakami, M., Sakai, N., Higuchi, T., and Tanaka, S., Jpn. J. Appl. Phys. 33 (7B/2), L-1000 (1994).CrossRefGoogle Scholar
3.Kramer, M. J., Yoo, S. I., McCallum, R. W., Yelon, W. B., Xie, H., and Allenspach, P., Physica C 219, 145 (1994).CrossRefGoogle Scholar
4.Murakami, M., Yoo, S. I., Higuchi, T., Sakai, N., Weltz, J., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 33 (5B/2), L-715 (1994).CrossRefGoogle Scholar
5.Ohyama, T., Takahashi, M., Sakai, N., Yoo, S. I., Watahiki, M., Higuchi, T., and Murakami, M., Advances in Superconductivity VII (Springer-Verlag, Tokyo, 1995), p. 701.CrossRefGoogle Scholar
6.Murakami, M., Gotoh, S., Fujimoto, H., Yamaguchi, K., Koshizuka, N., and Tanaka, S., Supercond. Sci. Technol. 4, S49 (1991).CrossRefGoogle Scholar
7.Lee, D. F., Selvamanickam, V., and Salama, K., Physica C 202, 83 (1992).CrossRefGoogle Scholar
8.Wang, Z. L., Goyal, A., and Kroeger, D. M., Phys. Rev. B 47, 5373 (1993).CrossRefGoogle Scholar
9.Fujimoto, H., Murakami, M., Gotoh, S., Koshizuka, N., and Tanaka, S., Advances in Superconductivity II, (Springer-Verlag, Tokyo, 1990), p. 285.CrossRefGoogle Scholar
10.Sawano, K., Morita, M., Kimura, K., Doi, K., and Miyamoto, K., High Temperature Superconducting Compounds II, edited by Whang, S. H., DasGupta, H., and Larbowitz, R. (The Minerals Metals & Materials Society, 1990), p. 61.Google Scholar
11.Yoo, S. I., Murakami, M., and Sakai, N., Advances in Superconductivity VII (Springer-Verlag, Tokyo, 1995), p. 341.CrossRefGoogle Scholar
12.Murakami, M., Melt processed high-temperature superconductors (World Scientific, Singapore, 1992), p. 16.Google Scholar
13.Frangi, F., Varesi, E., Ripamonti, G., and Zannella, S., Supercond. Sci. Technol. 7, 103 (1994).CrossRefGoogle Scholar
14.Oka, K., Saito, M., Ito, M., Nakame, K., Murata, K., Nishihara, Y., and Unoki, H., Jpn. J. Appl. Phys. 28 (2), L219 (1989).CrossRefGoogle Scholar
15.Frangi, F., Higuchi, T., Deguchi, M., and Murakami, M., J. Mater. Res. 10, 2241 (1995).CrossRefGoogle Scholar