Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T06:05:58.521Z Has data issue: false hasContentIssue false

Nonisothermal phase formation kinetics in sol-gel-derived strontium bismuth tantalate

Published online by Cambridge University Press:  31 January 2011

Yun-Mo Sung*
Affiliation:
Department of Materials Science and Engineering, Daejin University, Pochun-koon, Kyunggi-do 487–711, Korea
*
Get access

Abstract

Phase formation characteristics of Sr0.7Bi2.4Ta2O9 (SBT) powder, synthesized via the sol-gel and pyrolysis processes, was investigated using the thermal analysis technique. The two exotherms, appearing in the differential thermal analysis (DTA) curve, were identified as crystallization of fluorite phase and transformation of fluorite to Aurivillius phase, respectively, using x-ray diffraction. Nonisothermal kinetic analysis of the DTA results shows activation energy values for the formation of fluorite and Aurivillius phases as 192 and 375 kJ/mol, respectively, and Avrami exponent values for each reaction as 0.91 and 0.96, respectively. The results of this investigation are presented and discussed in detail to understand the phase formation mechanism in the SBT system.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kato, K., Zheng, C., Finder, J.M., and Dey, S.K., J. Am. Ceram. Soc. 81, 1869 (1998).CrossRefGoogle Scholar
2.Boyle, T.J., Buchheit, C.D., Rodrigez, M.A., Al-Shareef, H.N., Hernandez, B.A., Scott, B., and Ziller, J.W., J. Mater. Res. 11, 2274 (1996).CrossRefGoogle Scholar
3.Nagahama, T., Manabe, T., Yamaguchi, I., Mizuta, S., and Tsuchiya, T., J. Mater. Res. 14, 3090 (1999).CrossRefGoogle Scholar
4.Chen, T.C., Li, T., Zhang, X., and Desu, S.B., J. Mater. Res. 12, 2165 (1998).CrossRefGoogle Scholar
5.Koiwa, I., Kanehara, T., Mita, J., Osaka, T., Ono, S., Sakakibara, A., and Seki, T., IEICE Trans. Electron. E81-C, 552 (1998).Google Scholar
6.Osaka, T., Sakakibara, A., Seki, T.. Ono, S., Koiwa, I., and Hashimoto, A., Jpn. J. Appl. Phys. 37, 597 (1998).CrossRefGoogle Scholar
7.Lee, J.S., Kwon, H.J., Jeong, Y.W., Kim, H.H., Hyun, S.J., and Noh, T.W., Appl. Phys. Lett. 74, 2690 (1999).CrossRefGoogle Scholar
8.Boyle, T.J., Buchheit, C.D., Rodriguez, M.A., Al-Shareef, H.N., Hernandez, B.A., Scott, B., and Ziller, J.W., J. Mater. Res. 11, 2274 (1996).CrossRefGoogle Scholar
9.Duran-Martin, P., Castro, A., Millan, P., and Jimenez, B., J. Mater. Res. 13, 2565 (1998).CrossRefGoogle Scholar
10.Watanabe, H., Mihara, T., Yoshimori, H., and Araujo, C.A.P., Jpn. J. Appl. Phys. 34, 5240 (1995).CrossRefGoogle Scholar
11.Kissinger, H.E., J. Res. Natl. Bur. Stand. (U.S.) 57, 217 (1956).CrossRefGoogle Scholar
12.Ozawa, T., Polymer 12, 150 (1971).CrossRefGoogle Scholar
13.Kingery, W.D., Bowen, H.K., and Uhlman, D.R., Introduction to Ceramics, 2nd ed. (John Wiley, New York, 1976), pp. 99.Google Scholar
14.Sun, K-H., J. Am. Ceram. Soc. 30, 277 (1947).CrossRefGoogle Scholar
15.Dietzel, A., Z. Electrochem. 48, 9 (1942).Google Scholar