Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T07:08:48.182Z Has data issue: false hasContentIssue false

Ni–Co composite metal embedded porous N-doped carbon for an effective binder-free supercapacitor electrode

Published online by Cambridge University Press:  18 December 2017

Kejun Feng*
Affiliation:
School of Chemistry and Material Engineering, Huizhou University, Huizhou 516007, Guangdong, People’s Republic of China
Huanfeng Huang
Affiliation:
School of Chemistry and Material Engineering, Huizhou University, Huizhou 516007, Guangdong, People’s Republic of China
Dandi Shi
Affiliation:
Guangdong Guangya High School, Guangzhou 510160, People’s Republic of China
Guiqiang Diao
Affiliation:
School of Chemistry and Material Engineering, Huizhou University, Huizhou 516007, Guangdong, People’s Republic of China
Xiyue Zhang*
Affiliation:
MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Binary transition metal oxides, such as NiCo2O4 (NCO) electrode have been demonstrated to be promising candidates for high-performance supercapacitors. However, their low electrical conductivity and poor stability made the electrochemical performance of most current NCO electrodes yet below the expectation. Herein, a novel electrode (NCC) consisting of binary transition metal (Ni–Co) nanoparticles embedded N-doped porous carbon matrix on graphite papers (GPs) has been developed with a high specific capacitance of 933.5 F/g at 1 mA/cm2 which is substantially 10 times than that of the NCO electrode (99.3 F/g) and much higher than those of most reported NCO based electrode. Moreover, this NCC electrode has an ultrahigh rate capability of 725.5 F/g at 10 mA/cm2 with excellent electrochemical durability (no capacitance decreases after 10,000 cycles). These results indicate a promising potential application of Ni–Co metal composite embedded carbon matrix for using as an effective electrode material in supercapacitors.

Type
Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Tianyu Liu

References

REFERENCES

Ahmed, S., Mahmood, A., Hasan, A., Sidhu, G.A.S., and Butt, M.F.U.: A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities. Renewable Sustainable Energy Rev. 57, 216 (2016).CrossRefGoogle Scholar
Wang, F., Kozawa, D., Miyauchi, Y., Hiraoka, K., Mouri, S., Ohno, Y., and Matsuda, K.: Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat. Commun. 6, 6305 (2015).CrossRefGoogle ScholarPubMed
Liang, Q., Yan, X., Liao, X., Cao, S., Zheng, X., Si, H., Lu, S., and Zhang, Y.: Multi-unit hydroelectric generator based on contact electrification and its service behavior. Nano Energy 16, 329 (2015).CrossRefGoogle Scholar
Yu, M., Qiu, W., Wang, F., Zhai, T., Fang, P., Lu, X., and Tong, Y.: Three dimensional architectures: Design, assembly and application in electrochemical capacitors. J. Mater. Chem. A 3, 15792 (2015).CrossRefGoogle Scholar
Yu, M., Lin, D., Feng, H., Zeng, Y., Tong, Y., and Lu, X.: Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew. Chem., Int. Ed. 56, 5454 (2017).CrossRefGoogle ScholarPubMed
Yi, J., Qing, Y., Wu, C., Zeng, Y., Wu, Y., Lu, X., and Tong, Y.: Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J. Power Sources 351, 130 (2017).CrossRefGoogle Scholar
Yu, M., Zhao, S., Feng, H., Hu, L., Zhang, X., Zeng, Y., Tong, Y., and Lu, X.: Engineering thin MoS2 nanosheets on TiN nanorods: Advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2, 1862 (2017).CrossRefGoogle Scholar
Zheng, D., Feng, H., Zhang, X., He, X., Yu, M., Lu, X., and Tong, Y.: Porous MoO2 nanowires as stable and high-rate negative electrodes for electrochemical capacitors. Chem. Commun. 53, 3929 (2017).CrossRefGoogle ScholarPubMed
Ma, H., Kong, D., Xu, Y., Xie, X., Tao, Y., Xiao, Z., Lv, W., Jang, H.D., Huang, J., and Yang, Q.H.: Energy storage: Disassembly–reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, 1623 (2017).CrossRefGoogle Scholar
Lu, X., Yu, M., Wang, G., Zhai, T., Xie, S., Ling, Y., Tong, Y., and Li, Y.: H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25, 267 (2013).CrossRefGoogle Scholar
Yu, S., Feng, D., Liu, T., Li, Y., and Liu, X.: Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors. Nanoscale 7, 3581 (2015).Google Scholar
Zhai, T., Lu, X., Ling, Y., Yu, M., Wang, G., Liu, T., Liang, C., Tong, Y., and Li, Y.: A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13−x. Adv. Mater. 26, 5869 (2014).CrossRefGoogle ScholarPubMed
Bai, M., Liu, T., Luan, F., Li, Y., and Liu, X.: Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. J. Mater. Chem. A 2, 10882 (2014).CrossRefGoogle Scholar
Zhai, T., Wan, L., Sun, S., Chen, Q., Sun, J., Xia, Q., and Xia, H.: Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29, 1604167 (2017).CrossRefGoogle Scholar
Yu, M., Wang, W., Li, C., Zhai, T., Lu, X., and Tong, Y.: Scalable self-growth of Ni@NiO core–shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 6, e129 (2014).CrossRefGoogle Scholar
Singh, A., Sarkar, D., Khan, G., and Mandal, K.: Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitors. J. Mater. Chem. A 1, 12759 (2013).CrossRefGoogle Scholar
Rui, X., Tan, H., and Yan, Q.: Nanostructured metal sulfides for energy storage. Nanoscale 6, 9889 (2014).CrossRefGoogle ScholarPubMed
Padmanathan, N. and Selladurai, S.: Sonochemically precipitated spinel Co3O4 and NiCo2O4 nanostructures as an electrode materials for supercapacitor. AIP Conf. Proc. 1512, 1216 (2013).CrossRefGoogle Scholar
Ma, F., Yu, L., Xu, C., and Lou, X.: Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ. Sci. 9, 862 (2016).CrossRefGoogle Scholar
Zhao, Y., Teng, F., Liu, Z., Du, Q., Xu, J., and Teng, Y.: Electrochemical performances of asymmetric super capacitor fabricated by one-dimensional CoMoO4 nanostructure. Chem. Phys. Lett. 664, 23 (2016).CrossRefGoogle Scholar
Giri, S., Ghosh, D., and Das, C.K.: One pot synthesis of ilmenite-type NiMnO3–“nitrogen-doped” graphene nanocomposite as next generation supercapacitors. Dalton Trans. 42, 14361 (2013).CrossRefGoogle ScholarPubMed
Liu, B., Liu, B., Wang, Q., Wang, X., Xiang, Q., Chen, D., and Shen, G.: New energy storage option: Toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5, 10011 (2013).CrossRefGoogle ScholarPubMed
Zhang, G., Wu, H., Hoster, H., Chan-Park, M., and Lou, X.: Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 5, 9453 (2012).CrossRefGoogle Scholar
Zhang, X. and Xu, Y.: The precipitant influence on the electrochemical performance of NiCoO2 nanostructure. Mater. Lett. 189, 78 (2017).CrossRefGoogle Scholar
Lu, X., Wu, D., Li, R., Li, Q., Ye, S., Tong, Y., and Li, G.: Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2, 4706 (2014).CrossRefGoogle Scholar
Jiang, H., Ma, J., and Li, C.: Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem. Commun. 48, 4465 (2012).CrossRefGoogle ScholarPubMed
Xu, X., Zhao, H., Zhou, J., Xue, R., and Gao, J.: NiCoO2 flowers grown on the aligned-flakes coated Ni foam for application in hybrid energy storage. J. Power Sources 329, 238 (2016).CrossRefGoogle Scholar
Liu, T., Zhang, F., Song, Y., and Li, Y.: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705 (2017).CrossRefGoogle Scholar
Liu, T., Zhu, C., Kou, T., Worsley, M.A., Qian, F., Condes, C., Duoss, E., Spadaccini, C., and Li, Y.: Back cover: Ion intercalation induced capacitance improvement for graphene-based supercapacitor electrodes. ChemNanoMat 2, 757 (2016).CrossRefGoogle Scholar
Xu, Y., Wei, J., Tan, L., Yu, J., and Chen, Y.: A Facile approach to NiCoO2 intimately standing on nitrogen doped graphene sheets by one-step hydrothermal synthesis for supercapacitors. J. Mater. Chem. A 3, 7121 (2015).CrossRefGoogle Scholar
Wang, D., Li, F., Yin, L., Lu, X., Chen, Z., Gentle, I., Lu, G., and Cheng, H.: Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chem. – Eur. J. 18, 5345 (2012).CrossRefGoogle ScholarPubMed
Hulicova, D., Yamashita, J., Soneda, Y., Hatori, H., and Kodama, M.: Supercapacitors prepared from melamine-based carbon. Chem. Mater. 17, 1241 (2005).CrossRefGoogle Scholar
Hulicova, D., Kodama, M., and Hatori, H.: Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem. Mater. 18, 2318 (2006).CrossRefGoogle Scholar
Lota, G., Lota, K., and Frackowiak, E.: Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochem. Commun. 9, 1828 (2007).CrossRefGoogle Scholar
Frackowiak, E., Lota, G., Machnikowski, J., Vix-Guterl, C., and Béguin, F.: Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochim. Acta 51, 2209 (2006).CrossRefGoogle Scholar
Lu, X., Wang, G., Zhai, T., Yu, M., Gan, J., Tong, Y., and Li, Y.: Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690 (2012).CrossRefGoogle ScholarPubMed
Umeshbabu, E., Rajeshkhanna, G., Justin, P., and Rao, G.: Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures. Mater. Chem. Phys. 165, 235 (2015).CrossRefGoogle Scholar
Windisch, C., Exarhos, G., and Owings, R.: Vibrational spectroscopic study of the site occupancy distribution of cations in nickel cobalt oxides. J. Appl. Phys. 95, 5435 (2004).CrossRefGoogle Scholar
Du, W., Gao, Y., Tian, Q., Li, D., Zhang, Z., Guo, J., and Qian, X.: One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors. J. Nanopart. Res. 17, 368 (2015).CrossRefGoogle Scholar
Umeshbabu, E., Rajeshkhanna, G., Justin, P., and Rao, G.: Synthesis of mesoporous NiCo2O4–rGO by a solvothermal method for charge storage applications. RSC Adv. 5, 66657 (2015).CrossRefGoogle Scholar
Hadjiev, V., Iliev, M., and Vergilov, I.: The Raman spectra of Co3O4. J. Phys. C: Solid State Phys. 21, L199 (1988).CrossRefGoogle Scholar
Dong, B., Zhang, X., Xu, X., Gao, G., Ding, S., Li, J., and Li, B.: Preparation of scale-like nickel cobaltite nanosheets assembled on nitrogen-doped reduced graphene oxide for high-performance supercapacitors. Carbon 80, 222 (2014).CrossRefGoogle Scholar
Duan, X., Yang, Y., Liu, C., Zhou, M., Yang, L., He, H., Zhang, Y., and Xiao, P.: Iron–doped NiCoO2 nanoplates as efficient electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. 407, 177 (2017).CrossRefGoogle Scholar
Fan, H., Fu, D., Shu, T., Luo, M., Zhu, F., Liu, Y., Yue, S., and Zheng, M.: Simple synthesis of bimetal oxide@graphitized carbon nanocomposites via in-situ thermal decomposition of coordination polymers and their enhanced electrochemical performance for electrochemical energy storage. Electrochim. Acta 224, 80 (2017).CrossRefGoogle Scholar
Peck, M. and Langell, M.: Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 24, 4483 (2012).CrossRefGoogle Scholar
Biesinger, M., Lau, L., Gerson, A., and Smart, R.: The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys. Chem. Chem. Phys. 14, 2434 (2012).CrossRefGoogle ScholarPubMed
Li, Q., Liang, C., Lu, X., Tong, Y., and Li, G.: Ni@NiO core–shell nanoparticle tube arrays with enhanced supercapacitor performance. J. Mater. Chem. A 3, 6432 (2015).CrossRefGoogle Scholar
Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., and Dai, H.: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780 (2011).CrossRefGoogle ScholarPubMed
Harilal, M., Krishnan, S., Vijayan, B., Reddy, M., Adams, S., Barron, A., Yusoff, M., and Jose, R.: Continuous nanobelts of nickel oxide–cobalt oxide hybrid with improved capacitive charge storage properties. Mater. Des. 122, 376 (2017).CrossRefGoogle Scholar
Pisani, L., Chan, J., Montanari, B., and Harrison, N.: Electronic structure and magnetic properties of graphitic ribbons. Phys. Rev. B 75, 064418 (2007).CrossRefGoogle Scholar
Lu, X., Gu, L., Wang, J., Wu, J., Liao, P., and Li, G.: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29, 1604167 (2017).CrossRefGoogle Scholar
Xu, X., Xia, F., Zhang, L., and Gao, J.: Hydrothermal preparation of MnMoO4/reduced graphene oxide hybrid and its application in energy storage. Sci. Adv. Mater. 7, 423 (2015).CrossRefGoogle Scholar
Yan, Y., Zhang, X., Mao, H., Huang, Y., Ding, Q., and Pang, X.: Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications. Appl. Surf. Sci. 329, 76 (2015).CrossRefGoogle Scholar
Zinovyeva, V., Vorotyntsev, M., Bezverkhyy, I., Chaumont, D., and Hierso, J.: Highly dispersed palladium–polypyrrole nanocomposites: In-water synthesis and application for catalytic arylation of heteroaromatics by direct C–H bond activation. Adv. Funct. Mater. 21, 1064 (2011).CrossRefGoogle Scholar
Xu, X., Hong, W., Zhao, H., Song, Y., Qiu, H., and Gao, J.: 3D hierarchical dandelion-like NiCo2O4/N-doped carbon/Ni foam for an effective binder-free supercapacitor electrode. Mater. Chem. Phys. 186, 280 (2017).CrossRefGoogle Scholar
Wang, X., Sumboja, A., Lin, M., Yan, J., and Lee, P.S.: Enhancing electrochemical reaction sites in nickel–cobalt layered double hydroxides on zinc tin oxide nanowires: A hybrid material for an asymmetric supercapacitor device. Nanoscale 4, 7266 (2012).CrossRefGoogle ScholarPubMed
Gupta, V., Gupta, S., and Miura, N.: Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. J. Power Sources 175, 680 (2008).CrossRefGoogle Scholar
Huang, L., Chen, D., Ding, Y., Feng, S., Wang, Z., and Liu, M.: Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13, 3135 (2013).CrossRefGoogle ScholarPubMed
Zhang, G. and Lou, X.: Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci. Rep. 3, 1470 (2013).CrossRefGoogle ScholarPubMed
Luo, J., Gao, B., and Zhang, X.: High capacitive performance of nanostructured Mn–Ni–Co oxide composites for supercapacitor. Mater. Res. Bull. 43, 1119 (2008).CrossRefGoogle Scholar
Mai, L., Li, H., Zhao, Y., Xu, L., Xu, X., Luo, Y., Zhang, Z., Ke, W., Niu, C., and Zhang, Q.: Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Sci. Rep. 3, 1718 (2013).CrossRefGoogle Scholar
Supplementary material: File

Feng et al supplementary material

Feng et al supplementary material 1

Download Feng et al supplementary material(File)
File 3.4 MB