Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T05:51:44.322Z Has data issue: false hasContentIssue false

Nanoindentation and incipient plasticity

Published online by Cambridge University Press:  31 January 2011

E. B. Tadmor
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
R. Miller
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
R. Phillips*
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
M. Ortiz
Affiliation:
Department of Aeronautics, California Institute of Technology, Pasadena, California 91125
*
c)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This paper presents a large-scale atomic resolution simulation of nanoindentation into a thin aluminum film using the recently introduced quasicontinuum method. The purpose of the simulation is to study the initial stages of plastic deformation under the action of an indenter. Two different crystallographic orientations of the film and two different indenter geometries (a rectangular prism and a cylinder) are studied. We obtain both macroscopic load versus indentation depth curves, as well as microscopic quantities, such as the Peierls stress and density of geometrically necessary dislocations beneath the indenter. In addition, we obtain detailed information regarding the atomistic mechanisms responsible for the macroscopic curves. A strong dependence on geometry and orientation is observed. Two different microscopic mechanisms are observed to accommodate the applied loading: (i) nucleation and subsequent propagation into the bulk of edge dislocation dipoles and (ii) deformation twinning.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nix, W.D., Metall. Trans. A 20A, 2217 (1989).CrossRefGoogle Scholar
2.Sutton, A. P. and Pethica, J. B., J. Phys.: Condens. Matter 2, 5317 (1990).Google Scholar
3.McClintock, F. A. and Argon, A. S., Mechanical Behavior of Materials (Addison-Wesley, Reading, MA, 1966), Chap. 13.Google Scholar
4.Sharp, S. J., Ashby, M. F., and Fleck, N. A., Acta Metall. Mater. 41, 685 (1993).CrossRefGoogle Scholar
5.Gerberich, W.W., Nelson, J. C., Lilleodden, E.T., Anderson, P., and Wyrobek, J. T., Acta Mater. 44, 3585 (1996).CrossRefGoogle Scholar
6.Gane, N. and Bowden, F. P., J. Appl. Phys. 39, 1432 (1968).CrossRefGoogle Scholar
7.Nowak, R., Li, C. L., and Maruno, S., J. Mater. Res. 12, 64 (1997).CrossRefGoogle Scholar
8.Tangyunyong, P., Thomas, R.C., Houston, J. E., Michalske, T. A., Crooks, R. M., and Howard, A. J., Phys. Rev. Lett. 71, 3319 (1993).CrossRefGoogle Scholar
9.Pharr, G. M. and Oliver, W. C., J. Mater. Res. 4, 94 (1989).CrossRefGoogle Scholar
10.Landman, U., Luedtke, W. D., Burnham, N. A., and Colton, R. J., Science 248, 454 (1990).CrossRefGoogle Scholar
11.Kallman, J. S., Hoover, W.G., Hoover, C. G., De Groot, A. J., Lee, S. M., and Wooten, F., Phys. Rev. B 47, 7705 (1993).CrossRefGoogle Scholar
12.Belak, J., Glosli, J. N., Boercker, D. B., and Stowers, I. F., in Modelling and Simulation of Thin-Film Processing, edited by Srolovitz, D., Volkert, C. A., Fluss, M. J., and Kee, R. J. (Mater. Res. Soc. Symp. Proc. 389, Pittsburgh, PA, 1995), p. 181.Google Scholar
13.Tadmor, E. B., The Quasicontinuum Method, Ph.D. Thesis, Brown University, 1996.Google Scholar
14.Tadmor, E. B., Ortiz, M., and Phillips, R., Philos. Mag. A73, 1529 (1996).CrossRefGoogle Scholar
15.Tadmor, E. B., Phillips, R., and Ortiz, M., Langmuir 12, 4529 (1996).CrossRefGoogle Scholar
16.Shenoy, V. B., Miller, R., Tadmor, E. B., Phillips, R., and Ortiz, M., Phys. Rev. Lett. 80, 742 (1998).CrossRefGoogle Scholar
17.Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R., and Ortiz, M., J. Mech. Phys. Solids 47, 611 (1999).CrossRefGoogle Scholar
18.Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, 4th ed. (McGraw-Hill, London, 1989).Google Scholar
19.Daw, M.S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
20.Daw, M.S., Many-Atom Interactions in Solids, Springer Proceedings in Physics (Springer-Verlag, Berlin, 1990), Vol. 48, p. 48.CrossRefGoogle Scholar
21.Ercolessi, F. and Adams, J., Europhys. Lett. 26, 583 (1994).CrossRefGoogle Scholar
22.Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (Krieger, Malabar, FL, 1992), pp. 317, 424.Google Scholar
23.Muskhelishvili, N.I., Some Basic Problems of the Mathematical Theory of Elasticity, 3rd ed. (P. Noordhoff Ltd., Groningen, The Netherlands, 1953), pp. 481483.Google Scholar
24.Kulkarni, A.V. and Bhushan, B., Mater. Lett. 29, 221 (1996).CrossRefGoogle Scholar
25.Ma, Q. and Clarke, D. R., J. Mater. Res. 10, 853 (1995).CrossRefGoogle Scholar
26.Mills, M.J. and Stadelmann, P., Philos. Mag. A 60, 355 (1989).CrossRefGoogle Scholar
27.Friedel, J., Dislocations (Addison-Wesley, Reading, MA, 1967), pp. 40, 45, 54, 230.Google Scholar
28.Kosugi, T. and Kino, T., Mater. Sci. Eng. A 164, 368 (1993).CrossRefGoogle Scholar
29.Egami, T. and Srolovitz, D., J. Phys. F: Met. Phys. 12, 2141 (1982).CrossRefGoogle Scholar
30.Vitek, V. and Egami, T., Phys. Status Solidi B 144, 145 (1987).CrossRefGoogle Scholar
31.François, D., Pineau, A., and Zaoui, A., Comportement Mecanique des Materiaux (elasticite et plasticite), 3rd ed. (Hermes, Paris, 1995), pp. 189190.Google Scholar
32.Nix, W.D., Mater. Sci. Eng. A234, 37 (1997).CrossRefGoogle Scholar
33.Doerner, M.F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
34.Venables, J. A., in Deformation Twinning, Proceedings of the Metallurgical Society Conference, edited by Reed-Hill, R. E. (Gordon and Breach Science Publishers, 1963), Vol. 25, p. 77.Google Scholar
35.Rosakis, P. and Tsai, H., Mech. Mater. 17, 245 (1994).CrossRefGoogle Scholar
36.Pond, R.C. and Garcia-Garcia, L. M. F., Inst. Phys. Conf. Ser., No. 61, 495 (1981).Google Scholar
37.Kelchner, C.L., Plimpton, S.J., and Hamilton, J.C., Phys. Rev. B 58, 11085 (1998).CrossRefGoogle Scholar
38.Kelly, A. and Groves, G.W., Crystallography and Crystal Defects (Addison-Wesley, Reading, MA, 1970), p. 311.Google Scholar
39.Kubin, L., Canova, G., Condat, M., Devincre, B., Pontikis, V., and Bréchet, Y., Solid State Phenom. 23 & 24, 455 (1992).CrossRefGoogle Scholar
40.Fivel, M., Verdier, M., and Canova, G., Mater. Sci. Eng. A234–236, 923 (1997).CrossRefGoogle Scholar