Article contents
Multi-scale porous graphene/activated carbon aerogel enables lightweight carbonaceous catalysts for oxygen reduction reaction
Published online by Cambridge University Press: 20 September 2017
Abstract
The catalytic property toward oxygen reduction reaction (ORR) plays a significant role in the power generation of fuel cells (FCs). Here we demonstrate a graphene/activated carbon aerogel (GA/AC) composite to facilitate the ORR process, which is synthesized by a one-step hydrothermal method. The aligned pores and high porosity enable its mass density 20-times lighter than bare AC. Electrochemical studies show that the composite exhibits a remarkably improved electro-catalytic performance. The onset potential shifts positively from 0.68 to 0.83 V, and the number of electrons transferred is increased from 2.85 to 3.52, indicating that a four-electron pathway dominates the ORR process. This composite presents a mesoporous structure containing a large number of multi-scale pores and having a high specific surface area of 758.19 m2/g, which is responsible for its excellent onset potential and charge transfer rate. These aerogel-composites show great potential as ORR catalysts for assembling lightweight FCs and metal-air batteries.
Keywords
- Type
- Invited Article
- Information
- Journal of Materials Research , Volume 33 , Issue 9: Focus Issue: Porous Carbon and Carbonaceous Materials for Energy Conversion and Storage , 14 May 2018 , pp. 1247 - 1257
- Copyright
- Copyright © Materials Research Society 2017
Footnotes
Contributing Editor: Tianyu Liu
References
REFERENCES
- 8
- Cited by