Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T12:52:13.751Z Has data issue: false hasContentIssue false

Microstructure of SrTiO3 buffer layers and itseffects on superconducting properties ofYBa2Cu3O7-δ coated conductors

Published online by Cambridge University Press:  03 March 2011

H. Wang
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S.R. Foltyn
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P.N. Arendt
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Q.X. Jia
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J.L. MacManus-Driscoll
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
L. Stan
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Y. Li
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
X. Zhang
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P.C. Dowden
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

A thin layer of SrTiO3 (STO) has successfully been used as a buffer layer to grow high-quality superconducting YBa2Cu3O7-δ(YBCO) thick films on polycrystalline metal substrates with a biaxially oriented MgO template produced by ion-beam-assisted deposition. Using this architecture, 1.5-μm-thick YBCO films with an in-plane mosaic spread in the range of 2.5° to 3.5° in full width at half-maximum and critical current density over 2 × 10 6A/cm2 in self-field at 75 K have routinely been achieved. It is interesting to note that the pulsed laser deposition growth conditions of SrTiO3 buffer layers, such as growth temperature and oxygen pressure, have strong effects on the superconducting properties of YBCO. Detailed studies using transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used to explore the microstructures of STO deposited at different conditions and to understand further their effects on the growth and properties of YBCO films.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iijima, Y., Tanabe, N., Kohno, O. and Ikeno, Y.: In-plane aligned YBa2Cu3O7−x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
2Arendt, P.N., Foltyn, S.R., Civale, L., DePaula, R.F., Dowden, P.C., Groves, J.R., Holesinger, T.G., Jia, Q.X., Kreiskott, S., Stan, L., Usov, I., Wang, H. and Coulter, J.Y.: High Critical Current YBCO Coated Conductors Based on IBAD MgO. Physica C (in press).Google Scholar
3Bauer, M., Semerad, R. and Kinder, H.: YBCO films on metal substrates with biaxially aligned MgO buffer layers. IEEE Trans. Appl. Supercond. 9, 1502 (1999).CrossRefGoogle Scholar
4Wu, X.D., Foltyn, S.R., Arendt, P.N., Blumenthal, W.R., Campbell, I.H., Cotton, J.D., Coulter, J.Y., Hults, W.L., Maley, M.P., Safar, H.F. and Smith, J.L.: Properties of YBa2Cu3O7− thick films on flexible buffered metallic substrates. Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
5Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E. and Sikka, V.K.: High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
6Paranthaman, M.P., Aytug, T., Kang, S., Feenstra, R., Budai, J.D., Christen, D.K., Arendt, P.N., Groves, J.R., DePaula, R.F., Foltyn, S.R. and Holesinger, T.G.: Fabrication of high Jc YBa2Cu3O7− tapes using the newly developed lanthanum manganate single buffer layers. IEEE Trans. on Appl. Supercond. 13, 2481 (2003).CrossRefGoogle Scholar
7Paranthaman, M., Aytug, T., Christen, D.K., Arendt, P.N., Foltyn, S.R., Groves, J.R., Stan, L., DePaula, R.F., Wang, H. and Holesinger, T.G.: Growth of thick YBa2Cu3O7−δ films carrying a critical current of over 230 A/cm on single LaMnO3-buffered ion-beam assisted deposition MgO substrates. J. Mater. Res. 18, 2055 (2003).CrossRefGoogle Scholar
8Jia, Q.X., Foltyn, S.R., Arendt, P.N., Groves, J.R., Holesinger, T.G., Hawley, M.E. and Lu, P.: Role of SrRuO3 buffer layers on the superconducting properties of YBa2Cu3O7 films grown on polycrystalline metal alloy using a biaxially oriented MgO template. Appl. Phys. Lett. 81, 4571 (2002).CrossRefGoogle Scholar
9Cheung, J.T., Gergis, I., James, M. and Dewames, R.E.: Reproducible growth of high quality YBa2Cu3O7−x film on (100) MgO with a SrTiO3 buffer layer by pulsed laser deposition. Appl. Phys. Lett. 60, 3180 (1992).CrossRefGoogle Scholar
10Cheng, H-F., Lin, C-H., Lin, H-Y., Lo, J-T., Tseng, T-F., Liu, K-S. and Lin, I-N.: Influence of the characteristics of a SrTiO3 buffer layer on the superconductivity of laser-ablated YBa2Cu3O7− films. Physica C 230, 267 (1994).CrossRefGoogle Scholar
11Tamura, K., Yoshida, Y., Sudoh, K., Kurosaki, H., Matsunami, N., Hirabayashi, I. and Takai, Y.: Influence of the microstructure of the SrTiO3 buffer layer on the superconducting properties of YBa2Cu3O7−x films. Physica C 357, 1386 (2001).CrossRefGoogle Scholar
12Groves, J.R., Arendt, P.N., Kung, H., Foltyn, S.R., DePaula, R.F., Emmert, L.A. and Storer, J.G.: Texture development in IBAD MgO films as a function of deposition thickness and rate. IEEE Trans. Appl. Supercond. 11, 2822 (2001).CrossRefGoogle Scholar
13 S.R. Foltyn, Q.X. Jia, P.N. Arendt, J.Y. Coulter, P.C. Dowden, T.G. Holesinger, and L. Civale. Thick superconducting films for high current coated conductors. Proceedings of the Department of Energy Superconductivity for Electric System Annual Peer Review, 17–19 July 2002, Washington, DC.Google Scholar
14Foltyn, S.R., Arendt, P.N., Jia, Q.X., Wang, H., MacManus-Driscoll, J.L., Kreiskott, S., DePaula, R.F., Stan, L., Groves, J.R. and Dowden, P.C.: Strongly coupled critical current density values achieved in Y1Ba2Cu3O7− coated conductors with near-single-crystal texture. Appl. Phys. Lett. 82, 4519 (2003).CrossRefGoogle Scholar
15Narayan, J. and Larson, B.C.: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).CrossRefGoogle Scholar
16Groves, J.R., Arendt, P.N., Foltyn, S.R., Jia, Q.X., Holesinger, T.G., Kung, H., Peterson, E.J., DePaula, R.F., Dowden, P.C., Stan, L. and Emmert, L.A.: High critical current density YBa2Cu3O7−δ thick films using ion beam assisted deposition MgO bi-axially oriented template layers on nickel-based superalloy substrates. J. Mater. Res. 16, 2175 (2001).CrossRefGoogle Scholar
17Groves, J.R., Arendt, P.N., Foltyn, S.R., Jia, Q.X., Holesinger, T.G., Kung, H., DePaula, R.F., Dowden, P.C., Peterson, E.J., Stan, L. and Emmert, L.A.: Recent progress in continuously processed IBAD MgO template meters for HTS applications. Physica C 382, 43 (2002).CrossRefGoogle Scholar
18Chang, C.C., Wu, X.D., Ramesh, R., Xi, X.X., Ravi, T.S., Venkatesan, T., Hwang, D.M., Muenchausen, R.E., Foltyn, S. and Nogar, N.S.: Origin of surface roughness for c-axis oriented Y-Ba-Cu-O superconducting films. Appl. Phys. Lett. 57, 1814 (1990).CrossRefGoogle Scholar
19 M. Ohring. The Materials Science of Thin Films (Academic Press, San Diego, CA, 1992), p. 204.CrossRefGoogle Scholar