Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T11:56:20.445Z Has data issue: false hasContentIssue false

Microstructure of La1–xCaxMnO3 studied by transmission electron microscopy

Published online by Cambridge University Press:  31 January 2011

Q. Chen*
Affiliation:
Department of Electronics, Peking University, Beijing 100871, People's Republic of China
J. Tao
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801
J. J. Zuo
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801
J. J. H. Spence
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

Microstructures of La1-xCaxMnO3 compounds (x = ⅓ and 0.5) prepared with and without intermediate grinding were studied using transmission electron microscopy. A high density of antiphase boundaries (APBs) with displacement vector 1/2 〈111〉, indexed in orthorhombic unit cell, has been observed in bulk samples with no or minimum intermediate grinding. The nature of this APB is analyzed and found to bedue to the symmetry breaking introduced by the tilting of MnO6 octahedra relative to the ideal perovskite structure. Samples prepared using two intermediate grinds do not show these defects indicating that the microstructure can be controlled through synthesis routes. The effect of domain boundaries on the colossal magnetoresistance effect is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).CrossRefGoogle Scholar
2Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).CrossRefGoogle Scholar
3Ksters, R.M., Singleton, J., Keen, D.A., McGreevy, R., and Hayes, W., Physica B 155, 362 (1989).CrossRefGoogle Scholar
4Huang, Q., Santoro, A., Lynn, J.W., Erwin, R.W., Borchers, J.A., Peng, J.L., Ghosh, K., and Greene, R.L., Phys. Rev. B 58, 2684 (1998).CrossRefGoogle Scholar
5Ramirez, A.P., Schiffer, P., Cheong, S.W., Chen, C.H., Bao, W., Palstra, T.T.M., Gammel, P.L., Bishop, D.J., and Zegarski, B., Phys. Rev. Lett. 76, 3188 (1996).CrossRefGoogle Scholar
6Mori, S., Chen, C.H., and Cheong, S.W., Nature 392, 473 (1998).Google Scholar
7Hwang, H.Y., Cheong, S.W., Radaelli, P.G., Marezio, M., and Batlogg, B., Phys. Rev. Lett. 75, 914 (1995).CrossRefGoogle Scholar
8Ju, H.L., Gopalakrshnan, J., Peng, J.L., Li, Q., Xiong, G.C., Venkatesan, T., and Greene, R.L., Phys. Rev. B 51, 6143 (1995).CrossRefGoogle Scholar
9Schiffer, P., Ramirez, A.P., Bao, W., and Cheong, S.W., Phys. Rev. Lett. 75, 3336 (1995).CrossRefGoogle Scholar
10Gupta, A., Gong, G.Q., Xiao, G., Duncombe, P.R., Lecoeur, P., Trouilloud, P., Wang, Y.Y., Dravid, V.P., and Sun, J.Z, Phys. Rev. B 54, R15629 (1996).CrossRefGoogle Scholar
11Mathur, N.D., Burnell, G., Isaac, S.P., Jackson, T.J., Teo, B.S., MacManus Driscoll, J.L., Cohn, L.F., Evetts, J.E., and Blamire, M.G., Nature 387, 266 (1997).CrossRefGoogle Scholar
12Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science 264, 413 (1994).CrossRefGoogle Scholar
13Kusters, R.M., Singleton, J., Keen, D.A., McGreevy, R., and Hayes, W., Physica (Amsterdam) 155B, 362 (1989).Google Scholar
14Wang, H.S., Wertz, E., Hu, Y.F., and Li, Q., J. Appl. Phys. 87, 6749 (2000).CrossRefGoogle Scholar
15Faaland, S., Knudsen, K.D., Einarsrud, M.A., Rormark, L., Hoier, R., and Grande, T., J. Solid State Chem. 140, 320 (1998).Google Scholar
16Radaelli, P.G., Cox, D.E., Marezio, M., and Cheong, S.W., Phys. Rev. B 55, 3015 (1997).CrossRefGoogle Scholar
17Radaelli, P.G., Cox, D.E., Capogna, L., Cheong, S.W., and Marezio, M., Phys. Rev. B 59, 14440 (1999).CrossRefGoogle Scholar
18Dechamps, M., de Leon Guevara, A.M., Pinsard, L., and Revcolevschi, A., Philos. Mag. A 80, 119 (2000).CrossRefGoogle Scholar
19Barnabe, A., Hervieu, M., Martin, C., Maignan, A., and Raveau, B., J. Appl. Phys. 84, 5506 (1998).Google Scholar
20Lebedev, O.I., Van Tendeloo, G., Amelinckx, S., Leibold, B., and Habermeier, H.U., Phys. Rev. B 58, 8065 (1998).CrossRefGoogle Scholar
21Hirsch, P., Howie, A., Pashley, D.W., and Whelan, M.J., Electron Microscopy of Thin Crystals, 2nd revised ed. (Robert E. Krieger Publishing Co., Malabar, FL, 1977), pp. 156194.Google Scholar
22Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976).Google Scholar
23Reed, J.S., Introduction to the Principles of Ceramic Processing (John Wiley & Sons, New York, 1988).Google Scholar
24Humphreys, J., in Processing of Metals and Alloys, edited by Cahn, R.W. (VCH Verlagsgesellschaft, Weinheim, Germany, 1991), pp. 374415.Google Scholar
25Lebedev, O.I., Van Tendeloo, G., Abakumov, A.M., Amelinckx, S., Leibold, B., and Habermeier, H.U., Philos. Mag. A 79, 1461 (1999).Google Scholar