Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T17:06:33.910Z Has data issue: false hasContentIssue false

Microstructure and mechanical properties of ultrafine-grained titanium processed by multi-pass ECAP at room temperature using core–sheath method

Published online by Cambridge University Press:  23 August 2018

Alireza Derakhshandeh*
Affiliation:
School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
Hamed Shahmir
Affiliation:
School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
Mahmoud Nili-Ahmadabadi
Affiliation:
School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran; and Center of Excellence for High Performance Materials, School of Metallurgy and Materials, University of Tehran, Tehran 11155-4563, Iran
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A commercially pure titanium (CP-Ti) of grade 1 as a hard-to-deform material was processed successfully by ECAP processing up to four passes at room temperature via the core–sheath method using a die with an internal channel angle of 90°. The simulation and analytical calculations demonstrated that imposed back pressure on the core was increased at each pass due to strain hardening of sheath metal (AISI 1015 steel) during deformation which prevented damage accumulation and crack initiation at a high number of passes. The scanning electron microscopy and transmission electron microscopy observations of ECAP-processed Ti revealed a severely deformed microstructure which consisted of a high dislocation density and an average grain size of ∼250 nm. Mechanical properties of four-pass ECAP-processed CP-Ti showed a substantial enhancement of ultimate tensile strength up to 890 MPa associated with a reasonable elongation to failure of 15.3%.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mora-Sanchez, H., Sabirov, I., Monclus, M.A., Matykina, E., and Molina-Aldareguia, J.M.: Ultra-fine grained pure titanium for biomedical applications. Mater. Technol. 31, 756 (2016).CrossRefGoogle Scholar
Sedarat, C., Harmand, M.F., Naji, A., and Nowzari, H.: In vitro kinetic evaluation of titanium alloy biodegradation. J. Periodontal. Res. 36, 269 (2001).CrossRefGoogle ScholarPubMed
Nag, S., Banerjee, R., and Fraser, H.L.: Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe, and Ti–15Mo biocompatible alloys. Mater. Sci. Eng., C 25, 357 (2005).CrossRefGoogle Scholar
Latysh, V., Krallics, G., Alexandrov, I., and Fodor, A.: Application of bulk nanostructured materials in medicine. Curr. Appl. Phys. 6, 262 (2006).CrossRefGoogle Scholar
Serra, G., Morais, L., Elias, C.N., Semenova, I.P., Valiev, R., Salimgareeva, G., Pithon, M., and Lacerda, R.: Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants. Mater. Sci. Eng., C 33, 4197 (2013).CrossRefGoogle ScholarPubMed
Valiev, R.Z., Semenova, I.P., Latysh, V.V., Shcherbakov, A.V., and Yakushina, E.B.: Nanostructured titanium for biomedical applications: New developments and challenges for commercialization. Nanotechnol. Russ. 3, 593 (2008).CrossRefGoogle Scholar
Dimić, I., Cvijović-Alagić, I., Völker, B., Hohenwarter, A., Pippan, R., Veljović, D., Rakin, M., and Bugarski, B.: Microstructure and metallic ion release of pure titanium and Ti–13Nb–13Zr alloy processed by high pressure torsion. Mater. Des. 91, 340 (2016).CrossRefGoogle Scholar
Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).CrossRefGoogle Scholar
Balyanov, A., Kutnyakova, J., Amirkhanova, N.A., Stolyarov, V.V., Valiev, R.Z., Liao, X.Z., Zhao, Y.H., Jiang, Y.B., Xu, H.F., Lowe, T.C., and Zhu, Y.T.: Corrosion resistance of ultra fine-grained Ti. Scr. Mater. 51, 225 (2004).CrossRefGoogle Scholar
La, P., Ma, J., Zhu, Y.T., Yang, J., Liu, W., Xue, Q., and Valiev, R.Z.: Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Mater. 53, 5167 (2005).CrossRefGoogle Scholar
Figueiredo, R.B., Barbosa, E.R.D., Zhao, X., Yang, X., Liu, X., Cetlin, P.R., and Langdon, T.G.: Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing. Mater. Sci. Eng., A 619, 312 (2014).CrossRefGoogle Scholar
Vinogradov, A.Y., Stolyarov, V.V., Hashimoto, S., and Valiev, R.Z.: Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation. Mater. Sci. Eng., A 318, 163 (2001).CrossRefGoogle Scholar
Kim, T.N., Balakrishnan, A., Lee, B.C., Kim, W.S., Smetana, K., Park, J.K., and Panigrahi, B.B.: In vitro biocompatibility of equal channel angular processed (ECAP) titanium. Biomed. Mater. 2, S117 (2007).CrossRefGoogle ScholarPubMed
Bagherifard, S., Ghelichi, R., Khademhosseini, A., and Guagliano, M.: Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation. ACS Appl. Mater. Interfaces 6, 7963 (2014).CrossRefGoogle ScholarPubMed
An, B., Li, Z., Diao, X., Xin, H., Zhang, Q., Jia, X., Wu, Y., Li, K., and Guo, Y.: In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP. Mater. Sci. Eng., C 67, 34 (2016).CrossRefGoogle ScholarPubMed
Semiatin, S.L. and DeLo, D.P.: Equal channel angular extrusion of difficult-to-work alloys. Mater. Des. 21, 311 (2000).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., and Valiev, R.Z.: Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Mater. Sci. Eng., A 303, 82 (2001).CrossRefGoogle Scholar
Stolyarov, V.V., Theodore Zhu, Y., Alexandrov, I.V., Lowe, T.C., and Valiev, R.Z.: Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng., A 299, 59 (2001).CrossRefGoogle Scholar
Kang, D.H. and Kim, T.W.: Mechanical behavior and microstructural evolution of commercially pure titanium in enhanced multi-pass equal channel angular pressing and cold extrusion. Mater. Des. 31, S54 (2010).CrossRefGoogle Scholar
Zhao, X., Yang, X., Liu, X., Wang, X., and Langdon, T.G.: The processing of pure titanium through multiple passes of ECAP at room temperature. Mater. Sci. Eng., A 527, 6335 (2010).CrossRefGoogle Scholar
Zhang, Y., Figueiredo, R.B., Alhajeri, S.N., Wang, J.T., Gao, N., and Langdon, T.G.: Structure and mechanical properties of commercial purity titanium processed by ECAP at room temperature. Mater. Sci. Eng., A 528, 7708 (2011).CrossRefGoogle Scholar
Yamashita, A., Yamaguchi, D., Horita, Z., and Langdon, T.G.: Influence of pressing temperature on microstructural development in equal-channel angular pressing. Mater. Sci. Eng., A 287, 100 (2000).CrossRefGoogle Scholar
Nakashima, K., Horita, Z., Nemoto, M., and Langdon, T.G.: Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Mater. 46, 1589 (1998).CrossRefGoogle Scholar
Zhao, X., Yang, X., Liu, X., Wang, C.T., Huang, Y., and Langdon, T.G.: Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature. Mater. Sci. Eng., A 607, 482 (2014).CrossRefGoogle Scholar
Derakhshandeh, A., Nili-Ahmadabadi, M., Khajezade, A., and Shahmir, H.: Room temperature flow behavior of Ti deformed by equal-channel angular pressing using core–sheath method. Adv. Eng. Mater. 19, 1 (2017).CrossRefGoogle Scholar
Jäger, A., Gärtnerova, V., and Tesař, K.: Microstructure and anisotropy of the mechanical properties in commercially pure titanium after equal channel angular pressing with back pressure at room temperature. Mater. Sci. Eng., A 644, 114 (2015).CrossRefGoogle Scholar
Podolskiy, A.V., Ng, H.P., Psaruk, I.A., Tabachnikova, E.D., and Lapovok, R.: Cryogenic equal channel angular pressing of commercially pure titanium: Microstructure and properties. J. Mater. Sci. 49, 6803 (2014).CrossRefGoogle Scholar
Figueiredo, R.B., Cetlin, P.R., and Langdon, T.G.: Stable and unstable flow in materials processed by equal-channel angular pressing with an emphasis on magnesium alloys. Metall. Mater. Trans. A 41, 778 (2010).CrossRefGoogle Scholar
Lapovok, R.Y.: The role of back-pressure in equal channel angular extrusion. J. Mater. Sci. 40, 341 (2005).CrossRefGoogle Scholar
Shahmir, H., Nili-Ahmadabadi, M., Razzaghi, A., Mohammadi, M., Wang, C.T., Jung, J.M., Kim, H.S., and Langdon, T.G.: Using dilatometry to study martensitic stabilization and recrystallization kinetics in a severely deformed NiTi alloy. J. Mater. Sci. 50, 4003 (2015).CrossRefGoogle Scholar
Shahmir, H., Nili-Ahmadabadi, M., Mansouri-Arani, M., Khajezade, A., and Langdon, T.G.: Evaluating the room temperature ECAP processing of a NiTi alloy via simulation and experiments. Adv. Eng. Mater. 17, 532 (2015).CrossRefGoogle Scholar
Shahmir, H., Nili-Ahmadabadi, M., Mansouri-Arani, M., Khajezade, A., and Langdon, T.G.: Evaluating a new core–sheath procedure for processing hard metals by equal-channel angular pressing. Adv. Eng. Mater. 16, 918 (2014).CrossRefGoogle Scholar
Shahmir, H., Nili-Ahmadabadi, M., Mansouri-Arani, M., and Langdon, T.G.: The processing of NiTi shape memory alloys by equal-channel angular pressing at room temperature. Mater. Sci. Eng., A 576, 178 (2013).CrossRefGoogle Scholar
Li, Y., Pang Ng, H., Do Jung, H., Kim, H.E., and Estrin, Y.: Enhancement of mechanical properties of grade 4 titanium by equal channel angular pressing with billet encapsulation. Mater. Lett. 114, 144 (2014).CrossRefGoogle Scholar
Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M., and Langdon, T.G.: Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35, 143 (1996).CrossRefGoogle Scholar
Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G.: The shearing characteristics associated with equal-channel angular pressing. Mater. Sci. Eng., A 257, 328 (1998).CrossRefGoogle Scholar
Semiatin, S.L., Delo, D.P., and Sell, E.B.: The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion. Acta Mater. 48, 1841 (2000).CrossRefGoogle Scholar
Son, I.H., Lee, J.H., and Im, Y.T.: Finite element investigation of equal channel angular extrusion with back pressure. J. Mater. Process. Technol. 171, 480 (2006).CrossRefGoogle Scholar
Kang, F., Liu, J.Q., Wang, J.T., and Zhao, X.: The effect of hydrostatic pressure on the activation of non-basal slip in a magnesium alloy. Scr. Mater. 61, 844 (2009).CrossRefGoogle Scholar
Mckenzie, P.W.J., Lapovok, R., and Estrin, Y.: The influence of back pressure on ECAP processed AA 6016: Modeling and experiment. Acta Mater. 55, 2985 (2007).CrossRefGoogle Scholar
Chen, Y.J., Li, Y.J., Xu, X.J., Hjelen, J., and Roven, H.J.: Novel deformation structures of pure titanium induced by room temperature equal channel angular pressing. Mater. Lett. 117, 195 (2014).CrossRefGoogle Scholar
Gu, Y., Ma, A., Jiang, J., Yuan, Y., and Li, H.: Deformation structure and mechanical properties of pure titanium produced by rotary-die equal-channel angular pressing. Metals 7, 297 (2017).CrossRefGoogle Scholar
Zherebtsov, S.V., Dyakonov, G.S., Salem, A.A., Sokolenko, V.I., Salishchev, G.A., and Semiatin, S.L.: Formation of nanostructures in commercial-purity titanium via cryorolling. Acta Mater. 61, 1167 (2013).CrossRefGoogle Scholar
Sordi, V.L., Ferrante, M., Kawasaki, M., and Langdon, T.G.: Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling. J. Mater. Sci. 47, 7870 (2012).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., Islamgaliev, R.K., and Valiev, R.Z.: Two step SPD processing of ultrafine-grained titanium. Nanostruct. Mater. 11, 947 (1999).CrossRefGoogle Scholar
Stolyarov, V.V., Zeipper, L., Mingler, B., and Zehetbauer, M.: Influence of post-deformation on CP-Ti processed by equal channel angular pressing. Mater. Sci. Eng., A 476, 98 (2008).CrossRefGoogle Scholar
Ma, E.: Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49, 663 (2003).CrossRefGoogle Scholar
Zhao, Y.H., Guo, Y.Z., Wei, Q., Dangelewicz, A.M., Xu, C., Zhu, Y.T., Langdon, T.G., Zhou, Y.Z., and Lavernia, E.J.: Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr. Mater. 59, 627 (2008).CrossRefGoogle Scholar
Zhao, Y.H., Guo, Y.Z., Wei, Q., Topping, T.D., Dangelewicz, A.M., Zhu, Y.T., Langdon, T.G., and Lavernia, E.J.: Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater. Sci. Eng., A 525, 68 (2009).CrossRefGoogle Scholar
Valiev, R.Z., Sergueeva, A.V., and Mukherjee, A.K.: The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scr. Mater. 49, 669 (2003).CrossRefGoogle Scholar
Semenova, I., Salimgareeva, G., Da Costa, G., Lefebvre, W., and Valiev, R.: Enhanced strength and ductility of ultrafine-grained Ti processed by severe plastic deformation. Adv. Eng. Mater. 12, 803 (2010).CrossRefGoogle Scholar