Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T08:51:01.076Z Has data issue: false hasContentIssue false

Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications

Published online by Cambridge University Press:  31 January 2011

Kanchana Vydianathan
Affiliation:
New York State Center for Advanced Thin Film Technology and Department of Physics, The University at Albany—SUNY, Albany, New York 12222
Guillermo Nuesca
Affiliation:
New York State Center for Advanced Thin Film Technology and Department of Physics, The University at Albany—SUNY, Albany, New York 12222
Gregory Peterson
Affiliation:
New York State Center for Advanced Thin Film Technology and Department of Physics, The University at Albany—SUNY, Albany, New York 12222
Eric T. Eisenbraun
Affiliation:
New York State Center for Advanced Thin Film Technology and Department of Physics, The University at Albany—SUNY, Albany, New York 12222
Alain E. Kaloyeros*
Affiliation:
New York State Center for Advanced Thin Film Technology and Department of Physics, The University at Albany—SUNY, Albany, New York 12222
John J. Sullivan
Affiliation:
MKS Instruments, Incorporated, Andover, Massachusetts 01810
Bin Han
Affiliation:
MKS Instruments, Incorporated, Andover, Massachusetts 01810
*
a)Address all correspondence to this author.
Get access

Abstract

A chemical vapor deposition process has been developed for titanium dioxide (TiOx) for applications as capacitor dielectric in sub-quarter-micron dynamic random-access memory devices, and as gate insulators in emerging generations of etal-oxide-semiconductor transistors. Studies using the β-diketonate source precursor (2,2,6,6-tetramethyl-3,5-heptanedionato) titanium were carried out to examine the underlying mechanisms that control film nucleation and growth kinetics and to establish the effects of key process parameters on film purity, composition, texture, morphology, and electrical properties. Resulting film properties were thoroughly analyzed by x-ray diffraction, x-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, scanning electron microscopy (SEM), focused-ion-beam SEM, and capacitance–voltage (C–V) measurements. The study resulted in the identification of an optimized process for the deposition of an anatase–rutile TiOx film with a dielectric constant approximately 85 at 1 MHz for a 330-nm thickness, and a leakage current below 2 × 10−8 A/cm2 for bias voltage values up to 3.5 V.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.International Technology Roadmap for Semiconductors-1999 Edition (Semiconductor Industry Association, San Jose, CA, 1999).Google Scholar
2.Kotecki, D.E., Semicond. Int. 19, 109 (1996).Google Scholar
3.El-Kareh, B., Bronner, G.B., and Schuster, S.E., Solid State Technol. 40, 89 (1997).Google Scholar
4.Shinriki, H. and Nakata, M., IEEE Trans. Electron Dev. 38, 455 (1991).CrossRefGoogle Scholar
5.Kim, K. and Hwang, C-G., Lee, J.G., IEEE Trans. Electron Dev. 45, 598 (1998).Google Scholar
6.Bohr, M.T., IEEE Trans. Electron Dev. 45, 620 (1998).Google Scholar
7.Zerfoss, S., Stokes, R.G., and Moore, C.H. Jr., J. Chem. Phys. 16, 1166 (1948).CrossRefGoogle Scholar
8.Rausch, N. and Burte, E.P., J. Electrochem. Soc. 140, 145 (1993).CrossRefGoogle Scholar
9.Fuyuki, T. and Matsunami, H., Jpn. J. Appl. Phys. 25, 1288 (1986).CrossRefGoogle Scholar
10.Feuersanger, A.E., Proc. IEEE 52, 1463 (1964).CrossRefGoogle Scholar
11.Campbell, S.A., Gilmer, D.C., Wang, X., Hsieh, M.T., Kim, H.S., Gladfelter, W.L., and Yan, J., IEEE Trans. Electron Dev. 44, 245 (1977).Google Scholar
12.Pulker, H.K., Paesold, G., and Ritter, E., Appl. Opt. 15, 2986 (1976).CrossRefGoogle Scholar
13.Pulker, H.K., Appl. Opt. 18, 1969 (1979).CrossRefGoogle Scholar
14.Hass, G., Vacuum 2, 331 (1952).CrossRefGoogle Scholar
15.Martin, P.J., J. Mater. Sci. 21, 1 (1986).CrossRefGoogle Scholar
16.Kurtz, S.R. and Gordon, R.G., Solar Energy Mater. 15, 229 (1987).Google Scholar
17.Lottiaux, M., Boulesteix, C., Nihoul, G., and Varnier, F., Thin Solid Films 170, 107 (1989).CrossRefGoogle Scholar
18.Wicaksana, D., Kobayashi, A., and Kinbara, A., J. Vac. Sci. Technol. A10, 1479 (1992).Google Scholar
19.Lobl, P., Huppertz, M., and Mergel, D., Thin Solid Films 251, 72 (1994).CrossRefGoogle Scholar
20.Suhail, M.H., Rao, G.M., and Mohan, S., J. Appl. Phys. 71, 1421 (1992).CrossRefGoogle Scholar
21.Pongratz, S. and Zoller, A., J. Vac. Sci. Technol. A10, 1897 (1992).CrossRefGoogle Scholar
22.Siefering, K.L. and Griffin, G.L., J. Electrochem. Soc. 137, 814 (1990).Google Scholar
23.Won, T.K., Yoon, S.G., and Kim, H.G., J. Electrochem. Soc. 139, 11 (1992).CrossRefGoogle Scholar
24.Yoon, Y.S., Kang, W.N., and Yom, S.S., Thin Solid Films 238, 12 (1994).CrossRefGoogle Scholar
25.Maryama, T. and Arai, S., Solar Energy Mater. Solar Cells 26, 323 (1992).Google Scholar
26.Fitzgibbons, E.T., Sladek, K.J., and Harting, W.H., J. Electrochem. Soc. 119, 736 (1972).CrossRefGoogle Scholar
27.Ghoshtagore, R.N. and Noreika, A.J., J. Electrochem. Soc. 117, 1310 (1970).CrossRefGoogle Scholar
28.Kim, T.W., Jung, M., Kim, H.J., and Park, T.H., Appl. Phys. Lett. 64, 1407 (1994).CrossRefGoogle Scholar
29.Frenck, H.J., Kulisch, W., Kuhr, M., and Kassing, R., Thin Solid Films 201, 327 (1991).Google Scholar
30.Lee, W.G., Woo, S.I., Kim, J.C., Choi, S.H., and Oh, K.H., Thin Solid Films 237, 105 (1994).Google Scholar
31.Ha, H.K., Yoshimoto, M., and Koinuma, H., Appl. Phys. Lett. 68, 1265 (1996).CrossRefGoogle Scholar
32.William, L.M. and Hess, D.W., J. Vac. Sci. Technol. A 1, 1810 (1983).Google Scholar
33.Battiston, G.A., Gerbasi, R., Porchia, M., and Marigo, A., Thin Solid Films 239, 186 (1994).CrossRefGoogle Scholar
34.Chen, L., Piazza, T.W., Schmidt, B.E., Kelsey, J.E., Kaloyeros, A.E., Hazelton, D.W., Walker, M.S., Lou, L., Dye, R.C., Maggiore, C.J., Wilkins, D.J., and Knorr, D. B., J. Appl. Phys. 73, 7563 (1993).Google Scholar
35.Yamane, H., Kurosawa, H., Hirai, T., Watanabe, K., Iwasaki, H., Kobayashi, N., and Muto, Y., J. Cryst. Growth 98, 860 (1989).CrossRefGoogle Scholar
36.Tsuruoka, T., Kawasaki, R., and Abe, H., Jpn. J. Appl. Phys. 28, L1800 (1989).Google Scholar
37.Burgess, R., Hotsenpiller, P.A.M., Anderson, T.J., and Hohman, J.L., J. Cryst. Growth 166, 763 (1996).Google Scholar
38.Sze, S.M., Physics of Semiconductor Devices-Second Edition (John Wiley and Sons, New York, 1981).Google Scholar
39.Sivaram, S., Chemical Vapor Deposition-Thermal and Plasma Deposition of Electronic Materials (Van Nostrand Reinhold, New York, 1995).Google Scholar
40.Wagner, C.D., Riggs, W.N., Davis, L.E., Moulder, J.F., and Muilenberg, G.E., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Physical Electronics Division, 1979).Google Scholar
41.Nicollian, E.H. and Brews, J.R., Metal Oxide Semiconductor Phys-ics and Technology (John Wiley and Sons, New York, 1982).Google Scholar