Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T05:00:20.207Z Has data issue: false hasContentIssue false

Melt processing of Ba2CuO3: Textured precursor for the fabrication of HgBa2CuOy superconductor

Published online by Cambridge University Press:  31 January 2011

E. Sudhakar Reddy*
Affiliation:
Department of Superconductivity, The University of Tokyo, Hongo, Tokyo 113–8656, Japan
T. Murakami
Affiliation:
Department of Superconductivity, The University of Tokyo, Hongo, Tokyo 113–8656, Japan
Y. Nakayama
Affiliation:
Department of Superconductivity, The University of Tokyo, Hongo, Tokyo 113–8656, Japan
J. Shimoyama
Affiliation:
Department of Superconductivity, The University of Tokyo, Hongo, Tokyo 113–8656, Japan
K. Kishio
Affiliation:
Department of Superconductivity, The University of Tokyo, Hongo, Tokyo 113–8656, Japan
Get access

Abstract

A process for the fabrication of textured Ba2CuO3 material with a microstructure similar to that of melt-processed YBa2Cu3Oy (Y123) superconductor is discussed. The Ba2CuO3 samples were melt processed with the intent to use them as textured precursors for processing of HgBa2CuOy superconductor. The microstructure formation of the Ba2CuO3 phase was studied by observing the samples being quenched from intermediate stages of a melt growth schedule. The microstructure of melt-processed Ba2CuO3 reveals randomly oriented large-sized grains, similar to that of melt textured Y123. Other important microstructural features observed were finely distributed properitectic BaO particles, the absence of the platelet gaps within the domains, and the presence of a different kind of twin structure. The conversion of melt textured Ba2CuO3 into superconducting HgBa2CuOy phase by a two-step process is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jin, S., Tiefel, T.H., Sherwood, R.C., Van Dover, R.B., Davis, M.E., Kammlott, G.W. and Fastnacht, R.A., Phys. Rev. 28, 1189 (1989).Google Scholar
2.Kung, P.J., Maley, M.P., McHenry, M.E., Willis, J.O., Murakami, M., and Tanaka, S., Phys. Rev. B 18, 13922 (1993).CrossRefGoogle Scholar
3.Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsuishita, T., Kambe, S. and Kitazawa, K., Cryogenics 30, 390 (1990).CrossRefGoogle Scholar
4.Salama, K., and Lee, D.F., Supercond. Sci. Technol. 7, 177 (1994).CrossRefGoogle Scholar
5.Meng, R.L., Beauvais, L., Zhang, X.N., Huang, Z.J., Sun, Y.Y., Xue, Y.Y., and Chu, C.W., Physica C 216, 21 (1993).CrossRefGoogle Scholar
6.Peacock, G.B., Fletcher, A., Gameson, I., and Edwards, P.P., Physica C 301, 1 (1998).CrossRefGoogle Scholar
7.Moriwaki, Y., Sugano, T., Gasser, C., Fukuoka, A., Nakanishi, N., Adachi, S., and Tanabe, K., Appl. Phys. Lett., 69, 3423 (1996).CrossRefGoogle Scholar
8.Moriwaki, Y., Sugano, T., Gasser, C., Nakanishi, K., Adachi, S., and Tanabe, K., Physica C 282–287, 1 (1997).Google Scholar
9.Sastry, P.V.P.S.S., Amm, K.M., Knoll, D.C., Peterson, S.C., and Schwartz, J., Physica C 300, 125 (1998).CrossRefGoogle Scholar
10.Sudhakar Reddy, E., and Rajasekharan, T., J. Mater. Res. 13, 1828 (1998).Google Scholar
11.Sudhakar Reddy, E., J. Mater. Res. (in press).Google Scholar
12.Sudhakar Reddy, E. and Rajasekharan, T., J. Mater. Res. 13, 3382 (1998).CrossRefGoogle Scholar
13.The Basis of Quantitative Metallography, edited by Pickering, F.B., Institute of Metallurgical Technicians, Monograph No.1.Google Scholar
14.Lee, B.J. and Lee, D.N., J. Am. Ceram. Soc. 72, 316 (1989).Google Scholar
15.Bateman, C.A., Zhang, L., Chan, H.M., and Harmer, M.P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
16.Cima, M.J., Flemings, M.C., Figueredo, A.M., Nakade, M., Ishii, H., Brody, H.D., and Haggerty, J.S., J. Appl. Phys. 27, 179 (1992).CrossRefGoogle Scholar
17.Shimoyama, J., Kishio, K., Hahakura, S., Kitazawa, K., Yamaura, K., Hiroi, Z., and Takano, M., Adv. In Superconductivity VII (1996) p. 287.Google Scholar
18.Wolters, C., Amm, K.M., Sun, Y.R., and Schwartz, K., Physica C 267, 1 (1996).CrossRefGoogle Scholar
19.Reder, M., Krelaus, J., Schmidt, L., Heinemann, K., and Freyhardt, H.C., Physica C 306, 289 (1998).CrossRefGoogle Scholar
20.Sandiumenge, F., Pinol, S., Obradors, X., Snoeck, E., and Roucau, C., Phys. Rev. B. 50, 7032 (1994).Google Scholar
21.Sudhakar Reddy, E. and Rajasekharan, T., Phy. Rev. B 55, 14160 (1997).CrossRefGoogle Scholar
22.Diko, P., Takebayashi, S., Murakami, M., Physica C 297, 216 (1998).Google Scholar
23.Sudhakar Reddy, E. and Rajasekharan, T., Mater. Lett. 35, 62 (1998).CrossRefGoogle Scholar
24.Kim, C.J., Lee, H.J., Kim, K.B., and Hong, G.W., J. Mater. Res. 9, 2235 (1995).CrossRefGoogle Scholar
25.Sudhakar Reddy, E. and Rajasekharan, T., J. Mater. Sci. 34, 3755 (1999).CrossRefGoogle Scholar
26.The Science of Crystallization: Microscopic Interfacial Phenomena, edited by Tiller, W.A. (Cambridge Univ. Press, Cambridge, United Kingdom, 1991).CrossRefGoogle Scholar
27.Goodilin, E., Oka, A., Wen, J.G., Shiohara, Y., Kambara, M., and Umeda, T., Physica C 299, 279 (1998).CrossRefGoogle Scholar