Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-06T06:11:24.516Z Has data issue: false hasContentIssue false

Low-temperature fabrication of pyroelectric Ba0.8Sr0.2TiO3 thin films by a sol-gel process

Published online by Cambridge University Press:  26 November 2012

Jian-Gong Cheng*
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, Peoples Republic of China
Jun Tang
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, Peoples Republic of China
Shao-Ling Guo
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, Peoples Republic of China
Jun-Hao Chu
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, Peoples Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ba0.8Sr0.2TiO3 films were fabricated with a 0.05 M solution by a sol-gel process at temperatures between 550 and 650 °C. Analysis by x-ray diffraction, Raman spectroscopy, and scanning electron microscopy revealed that the films annealed at 650 °C showed pure perovskite phase, tetragonal structure, and columnar grains with an average grain size of 150 nm. Electrical measurements performed on the films annealed at 650 °C showed two dielectric peaks in the dielectric constant–temperature curve, a remnant polarization of 1.4 μC/cm2, a coercive field of 18.3 kV/cm, and good insulating property. The measured pyroelectric coefficient for the films annealed at 650 °C was larger than 3.1 × 10−4 C/m2K at the temperatures ranging from 10 to 26 °C and reached the maximum value of 4.1 × 10−4 C/m2K at 16 °C. The excellent pyroelectric property rendered the Ba0.8Sr0.2TiO3 films annealed at 650 °C promising for uncooled infrared detectors and thermal imaging applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.BjÖrmander, C., Sreenivas, K., Grishin, A.M., and Rao, K.V., Appl. Phys. Lett. 67, 58 (1995).Google Scholar
2.Whatmore, R.W., Osbond, P.C., and Shorrocks, N.M., Ferroelectrics 76, 351 (1987).CrossRefGoogle Scholar
3.Chu, C.M. and Lin, P., Appl. Phys. Lett. 70, 249 (1997).Google Scholar
4.Yoon, S., Lee, J., and Safari, A., J. Appl. Phys. 76, 2999 (1994).Google Scholar
5.Chern, C.S., Liang, S., Shi, Z., Yoon, S., Safari, A., Lu, P., Kear, B.H., Goodreau, B., Marks, T., and Hou, S., Appl. Phys. Lett. 64, 3181 (1994).Google Scholar
6.Tahan, D.M., Safari, A., and Klein, L., J. Am. Ceram. Soc. 79, 1593 (1996).Google Scholar
7.Baumert, B.A., Chang, L-H., Matsuda, A., Tracy, C., Cave, N., Gregory, R., and Fejes, P., J. Mater. Res. 13, 197 (1998).Google Scholar
8.Ivanov, D., Caron, M., Ouellet, L., Blain, S., Henducks, N., and Currie, J., J. Appl. Phys. 77, 2666 (1995).Google Scholar
9.Frey, M.H. and Payne, D.A., Appl. Phys. Lett. 63, 2753 (1993).Google Scholar
10.Gust, M.C., Evans, N., Momoda, L., and Mecartney, M., J. Am. Ceram. Soc. 80, 2828 (1997).Google Scholar
11.Akdogan, E.K., Mayo, W., Safari, A., Rawn, C.J., and Payzant, E.A., Ferroelectrics 223, 11 (1999).Google Scholar
12.Siefer, A., Lange, F.F., and Speck, J.S., J. Mater. Res. 10, 680 (1995).Google Scholar
13.Bell, R.O. and Rupprecht, G., Phys. Rev. 129, 90 (1963).CrossRefGoogle Scholar
14.Hoffmann, S., Hasenkox, U., Waser, R., Jia, C.L., and Urban, K., in Epitaxial Oxide Thin Films III, edited by Schlom, D.G., Eom, C-B., Hawley, M.E., Forster, C.M., and Speck, J.S. (Mater. Res. Soc. Symp. Proc. 474, Pittsburgh, PA, 1997), pp. 914.Google Scholar
15.Schwartz, R.W., Clem, P.G., Voigt, J.A., Byhoff, E.R., Stry, M.V., Headley, T.J., and Missert, N.A., J. Am. Ceram. Soc. 82, 2359 (1999).CrossRefGoogle Scholar
16.Byer, R.L. and Roundy, C.B., IEEE Trans. Sonics & Ultrasonics SU-19, 333 (1972).CrossRefGoogle Scholar
17.Dietz, G.W., Schumacher, M., and Waser, R., J. Appl. Phys. 82, 2359 (1997).Google Scholar
18.Robins, L.H., Kaiser, D.L., Rotter, L.D., Schence, P.K., Stauf, G., and Rytz, D., J. Appl. Phys. 76, 7487 (1994).Google Scholar
19.Jia, C.L., Urban, K., Hoffmann, S., and Waser, R., J. Mater. Res. 13, 2206 (1998).Google Scholar
20.Hasenkox, U., Hoffmann, S., Waser, R., J. Sol-Gel Sci. Technol. 12, 67 (1998).CrossRefGoogle Scholar
21.Zhang, L., Zhong, W-L., Wang, C-L., Zhang, P-L., Wang, Y-G., J. Phys. D: Appl. Phys. 32, 546 (1999).CrossRefGoogle Scholar
22.Teowee, G., McCarthy, K., and Uhlmann, D.R., SPIE 2746, 38 (1996).Google Scholar