Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T17:56:16.776Z Has data issue: false hasContentIssue false

Low–power plasma torch method for the production of crystalline spherical ceramic particles

Published online by Cambridge University Press:  31 January 2011

Chun-Ku Chen
Affiliation:
Chemical Engineering Department, 120 Fenske Lab, The Pennsylvania State University, University Park, Pennsylvania 16802
Seth Gleiman
Affiliation:
Los Alamos National Laboratory, Engineering Sciences and Applications Division, P.O. Box 1663, MS C930, Los Alamos, New Mexico 87545
Jonathan Phillips*
Affiliation:
Los Alamos National Laboratory, Engineering Sciences and Applications Division, P.O. Box 1663, MS C930, Los Alamos, New Mexico 87545, and Ceramic and Composite Materials Center, 209 Ferris Engineering Center, University of New Mexico, Albuquerque, New Mexico 87131
*
a)Address all correspondence to this author.
Get access

Abstract

A low-power, atmospheric pressure, microwave plasma torch was used to make spherical alumina particles of controlled size from irregularly shaped precursor powders. Detailed studies of the impact of operating parameters, particularly gas identity (argon or air), gas flow rates, and applied power, showed that particle size changed in a predictable fashion. The most important factor in controlling particle size appears to be precursor particle density in the aerosol stream that enters the plasma hot zone. This and other facts suggest that particle collision rate is primarily responsible for determining ultimate particle size, although atomic addition also plays a role. Reproducible volume average particle sizes ranging from 97 to 1150 μm3 were formed from precursor particles of order 14 μm3. Moreover, for the first time we report the creation of an atmospheric pressure low-power air plasma (<1 kW).

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shim, H., Phillips, J., and Silva, I.S., J. Mater. Res. 14, 849 (1999).CrossRefGoogle Scholar
2.Phillips, J., US Patent No. 5 989 648.Google Scholar
3.Ishigaki, T., Bando, Y., Morioshi, Y., and Boulos, M., J. Mater. Sci. 28, 4223 (1993).CrossRefGoogle Scholar
4.Boulos, M. and Pfender, E., MRS Bull. 21 (8), 65 (1996).CrossRefGoogle Scholar
5.Vissokov, G.P., Peev, T.M., Czako-Nagy, I., and Verles, A., Appl. Catal. 27, 257 (1986).CrossRefGoogle Scholar
6.Pfender, E., Plasma Chem. Plasma Proc. 19, 1 (1999).CrossRefGoogle Scholar
7.Fincke, J.R., Swank, W.D., and Haggard, D.C., Plasma Chem. Plasma Proc. 13, 579 (1993).CrossRefGoogle Scholar
8.Smith, R.W., Wei, D., and Apelian, D., Plasma Chem. Plasma Proc. 9, 135S, (1989).CrossRefGoogle Scholar
9.Kear, B.H., Chang, W., Skandan, G., and Hahn, H.W., U.S. Patent No. 5 514 350 (1996).Google Scholar
10.Boulos, M.I., IEEE Trans. Plasma Sci. 19, 1078, (1991).CrossRefGoogle Scholar
11.Kumar, P.M., Balasumramanian, C., Sali, N.D., Bhoraskar, S.V., Rohtgi, V.K., and Badrinarayanan, S., Mater. Sci. Eng. B 63, 215 (1999).CrossRefGoogle Scholar
12.Koura, S., Tanizaki, H., Niiyama, M., and Iwasaki, K., Mater. Sci. Eng. A 208, 69 (1996).CrossRefGoogle Scholar
13.Tanizaki, H., Otsuka, A., Niiyama, M., and Iwasaki, K., Mater. Sci. Eng. A 215, 157 (1996).CrossRefGoogle Scholar
14.Fauchais, P. and Vardelle, A., IEEE Trans. Plasma Sci. 25, 1258 (1997).CrossRefGoogle Scholar
15.Fauchais, P., Vardelle, A., and Denoirjean, A., Surf. Coat. Technol. 97, 66 (1997).CrossRefGoogle Scholar
16.Oh, S-M. and Park, D-W., Thin Solid Films 316, 189 (1998).CrossRefGoogle Scholar
17.Pavlovic, P.B., Kostic, Z.G., and Stefanovic, P. Lj., Mater. Sci. Forum 214, 205 (1996).CrossRefGoogle Scholar
18.Fan, X., Gitzhofer, F., and Boulos, M., J. Therm. Spray Tech. 7, 247 (1998).CrossRefGoogle Scholar
19.Besser, M.F. and Sordelet, D.J., J. Mater. Synth. Proc. 3, 223 (1995).Google Scholar
20.Fincke, J.R., Swank, W.D., and Haggard, D.C., Plasma Chem. Plasma Proc. 13, 579 (1993).CrossRefGoogle Scholar
21.Vardelle, M., Vardelle, A., Fauchais, P., and Boulos, M. I., AIChE J. 29, 236 (1983).CrossRefGoogle Scholar
22.Bica, I., Mater. Sci. Eng. B 68, 5 (1999).CrossRefGoogle Scholar
23.Westhoff, R., Trapaga, G., and Szekely, J., Metall. Trans. B 23B, 683 (1992).CrossRefGoogle Scholar
24.Trapaga, G., Westhoff, R., Szekely, J., Finske, J., and Swank, W.D., in Plasma Processing and Synthesis of Materials III, edited by Apelian, D. and Szekely, J. (Mater. Res. Soc. Symp. Proc.. 190, Pittsburgh, PA, 1991), p. 191.Google Scholar
25.Das, D.K. and Sivakumar, R., Acta Metall. Mater. 38, 2187 (1990).CrossRefGoogle Scholar
26.Hollis, K. and Neiser, R., J. Therm. Spray Technol. 7, 392 (1998).CrossRefGoogle Scholar
27.Varacalle, D. J. Jr., and Castro, R.G., J. Nucl. Mater. 230, 242 (1996).CrossRefGoogle Scholar
28.Wan, Y.P., Prasad, V., Wang, G-X., Sampath, S., and Fincke, J.R., J. Heat Trans. 121, 691 (1999).CrossRefGoogle Scholar
29.Bauchire, J.M., Gonzalez, J.J., and Proulx, P., J. Phys. D: Appl. Phys. 32, 675 (1999).CrossRefGoogle Scholar
30.Ananthapadmanabhan, P.V., Taylor, P.R., and Zhu, W., J. Alloys Compounds 287, 126 (1999).CrossRefGoogle Scholar
31.Fehr, S. and Hill, R., Adv. Packaging July–Aug. (1997).Google Scholar
32.Bujard, P., Kuhnlein, G., Ino, S., and Shiobara, T., IEEE Trans. Comp. Pack. Man. Technol. A17, 527 (1994).Google Scholar
33.Procter, P. and Solc, J., IEEE Trans Comp. Hybr. Man. Technol. 14, 708 (1991).CrossRefGoogle Scholar
34.Chen, C-K., Collins, L.R., and Phillips, J., J. Phys. D: Appl. Phys. 32, 688 (1999).CrossRefGoogle Scholar
35.Barrett, S., Image SXM, Scanning electron micrograph analysis package.Google Scholar
36.Jeong, J.Y., Babayan, S.E., Tu, V.J., Park, J., Henins, I., Hicks, R.F., and Selwyn, G.S., Plasma Sources Sci. Technol. 7, 282 (1998).CrossRefGoogle Scholar
37.Babayan, S.E., Jeong, J.Y., Tu, V.J., Park, J., Selwyn, G.S., and Hicks, R.F., Plasma Sources Sci. Technol. 7, 286 (1998).CrossRefGoogle Scholar
38.Levin, E.M., Robbins, C.R., and McMurdies, H.F., Phase Diagrams for Ceramacists (Am. Ceram. Soc., New York, 1964), Vol. 5.Google Scholar
39.Haynes, B.S. and Wagner, W.G., Prog. Eng. Combust. Sci. 7, 229 (1981).CrossRefGoogle Scholar
40.Wu, N.L. and Phillips, J., J. Catal. 113, 129 (1988).CrossRefGoogle Scholar
41.Frenklach, M. and Wang, H., J. Colloid Interface Sci. 118, 252 (1987).CrossRefGoogle Scholar
42.Frenklach, M. and Wang, H., in Soot Formation in Combustion: Mechanisms and Models, Vol. 59, edited by Bockhorn, A. (Berlin, Germany, 1994), p. 162.CrossRefGoogle Scholar
43.Richard, A., Stonge, L., Malvos, H., Gicquel, A., Hubert, J., and Mosian, M., J. Phys III France 5, 1269 (1995).Google Scholar
44.Snyder, S.C., Reynolds, L.D., Shaw, C.B., and Kearney, R.J., J. Quant. Spectrosc. Radiat. Transfer 46, 119 (1991).CrossRefGoogle Scholar
45.Parris, P. and Kenkre, V., Phys. Status Solidi. B 200, 39 (1997).3.0.CO;2-R>CrossRefGoogle Scholar
46.Gupta, N., Midha, V., Balakotaiah, V., and Economou, D., J. Electrochem. Soc. 146, 4659 (1999).CrossRefGoogle Scholar
47.Luque, J., Juchmann, W., Brinkman, E.A., and Jeffries, J.B., J. Vac. Sci. Technol. A16, 397 (1998).CrossRefGoogle Scholar
48.Abdallah, M.H. and Mermet, J.M., J. Quant. Spectrosc. Radiat. Transfer 19, 83 (1978).CrossRefGoogle Scholar
49Abdallah, M.H. and Mermet, J.M., Spectrochimica Acta 37B, 391 (1982).CrossRefGoogle Scholar
50.Brown, P.G., Workman, J.M., Haas, D.L., Fleitz, P.A., Miller, D.C., Seliskar, C.J., and Caruso, J.A., Appl. Spectroscopy 40, 477 (1986).CrossRefGoogle Scholar
51.Cortino, J., Saez, M., Quintero, M.C., Menendez, A., Sanchez Uria, E., and Sanz Medel, A., Spectrochimica Acta 47B, 425 (1992).Google Scholar
52.Vardelle, A., Fauchais, P., Dussoubs, B., and Themelis, N.J., Plasma Chem. Plasma Proc. 18, 551 (1998).CrossRefGoogle Scholar
53.Phelps, F.M. III, M.I.T. Wavelength Table, (1982), Vols. 1 and 2.Google Scholar