Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T13:23:10.041Z Has data issue: false hasContentIssue false

Introduction

Published online by Cambridge University Press:  14 February 2018

Lorenzo Valdevit
Affiliation:
University of California, Irvine, USA
Katia Bertoldi
Affiliation:
Harvard University, USA
James Guest
Affiliation:
Johns Hopkins University, USA
Christopher Spadaccini
Affiliation:
Lawrence Livermore National Laboratory, USA
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Architected Materials: Synthesis, Characterization, Modeling, and Optimal Design
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fleck, N.A., Deshpande, V.S., and Ashby, M.F.: Micro-architectured materials: Past, present and future. Proc. R. Soc. A 466, 24952516 (2011).Google Scholar
Valdevit, L., Jacobsen, A.J., Greer, J.R., and Carter, W.B.: Protocols for the optimal design of multi-functional cellular structures: From hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94, s15s34 (2011).Google Scholar
Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., and Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46, 309328 (2001).Google Scholar
Bauer, J., Meza, L.R., Schaedler, T.A., Schwaiger, R., Zheng, X., and Valdevit, L.: Nanolattices: An emerging class of mechanical metamaterials. Adv. Mater. 15, 17018501701926 (2017).Google Scholar
O’Masta, M.R., Dong, L., St-Pierre, L., Wadley, H.N.G., and Deshpande, V.S.: The fracture toughness of octet-truss lattices. J. Mech. Phys. Solids 98, 271289 (2016).Google Scholar
Lee, J-H., Wang, L., Boyce, M.C., and Thomas, E.L.: Periodic bicontinuous composites for high specific energy absorption. Nano Lett. 12, 43924396 (2012).Google Scholar
Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., and Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).Google Scholar
Vakil, A. and Engheta, N.: Transformation optics using graphene. Science 332, 12911294 (2011).CrossRefGoogle ScholarPubMed
Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G., and Zhang, X.: Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376U32 (2008).Google Scholar
Shelby, R.A., Smith, D.R., and Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 7779 (2001).Google Scholar
Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., and Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977980 (2006).Google Scholar
Mullin, T., Deschanel, S., Bertoldi, K., and Boyce, M.C.: Pattern transformation triggered by deformation. Phys. Rev. Lett. 99, 084301 (2007).Google Scholar
Zhang, Y., Matsumoto, E.A., Peter, A., Lin, P-C., Kamien, R.D., and Yang, S.: One-step nanoscale assembly of complex structures via harnessing of elastic instability. Nano Lett. 8, 11921196 (2008).Google Scholar
Liu, J., Gu, T., Shan, S., Kang, S.H., Weaver, J.C., and Bertoldi, K.: Harnessing buckling to design architected materials that exhibit effective negative swelling. Adv. Mater. 28, 66196624 (2016).Google Scholar
Lazarus, A. and Reis, P.M.: Soft actuation of structured cylinders through auxetic behavior. Adv. Eng. Mater. 17, 815820 (2015).Google Scholar
Yang, D., Mosadegh, B., Ainla, A., Lee, B., Khashai, F., Suo, Z., Bertoldi, K., and Whitesides, G.M.: Buckling of elastomeric beams enables actuation of soft machines. Adv. Mater. 27, 6323 (2015).Google Scholar
Li, J., Shim, J., Deng, J., Overvelde, J.T.B., Zhu, X., Bertoldi, K., and Yang, S.: Switching periodic membranes via pattern transformation and shape memory effect. Soft Matter 8, 1032210328 (2012).CrossRefGoogle Scholar
Zhu, X., Wu, G., Dong, R., Chen, C-M., and Yang, S.: Capillarity induced instability in responsive hydrogel membranes with periodic hole array. Soft Matter 8, 80888093 (2012).Google Scholar
Wang, P., Casadei, F., Shan, S., Weaver, J.C., and Bertoldi, K.: Harnessing buckling to design tunable locally resonant acoustic metamaterials. Phys. Rev. Lett. 113, 014301 (2014).Google Scholar
Bertoldi, K. and Boyce, M.C.: Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. Phys. Rev. B 77, 052105 (2008).Google Scholar
Shan, S., Kang, S.H., Wang, P., Qu, C., Shian, S., Chen, E.R., and Bertoldi, K.: Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves. Adv. Funct. Mater. 24, 49354942 (2014).Google Scholar
Celli, P., Gonella, S., Tajeddini, V., Muliana, A., Ahmed, S., and Ounaies, Z.: Wave control through soft microstructural curling: Bandgap shifting, reconfigurable anisotropy and switchable chirality. Smart Mater. Struct. 26, 035001 (2017).Google Scholar
Haghpanah, B., Salari-Sharif, L., Pourrajab, P., Hopkins, J., and Valdevit, L.: Multistable shape-reconfigurable architected materials. Adv. Mater. 28, 79157920 (2016).Google Scholar
Shan, S., Kang, S.H., Raney, J.R., Wang, P., Fang, L., Candido, F., Lewis, J.A., and Bertoldi, K.: Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 42964301 (2015).Google Scholar
Restrepo, D., Mankame, N.D., and Zavattieri, P.D.: Phase transforming cellular materials. Extreme Mech. Lett. 4, 5260 (2015).Google Scholar
Raney, J.R., Nadkarni, N., Daraio, C., Kochmann, D.M., Lewis, J.A., and Bertoldi, K.: Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl. Acad. Sci. U. S. A. 113, 97229727 (2016).Google Scholar
Zheng, X., DeOtte, J., Alonso, M.P., Farquar, G.R., Weisgraber, T.H., Gemberling, S., Lee, H., Fang, N., and Spadaccini, C.M.: Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001 (2012).CrossRefGoogle ScholarPubMed
Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J.P., Ermoshkin, A., Samulski, E.T., and DeSimone, J.M.: Continuous liquid interface production of 3D objects. Science 347, 13491352 (2015).Google Scholar
Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L., and Carter, W.B.: Ultralight metallic microlattices. Science 334, 962 (2011).Google Scholar
Lee, K-S., Kim, R.H., Yang, D-Y., and Park, S.H.: Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 33, 631681 (2008).Google Scholar
Eckel, Z.C., Zhou, C., Martin, J.H., Jacobsen, A.J., Carter, W.B., and Schaedler, T.A.: Additive manufacturing of polymer-derived ceramics. Science 351, 5862 (2016).Google Scholar
Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X., and Spadaccini, C.M.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 13731377 (2014).CrossRefGoogle ScholarPubMed
Wang, Q., Jackson, J.A., Ge, Q., Hopkins, J.B., Spadaccini, C.M., and Fang, N.X.: Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys. Rev. Lett. 117, 175901175906 (2016).Google Scholar
Smay, J.E., Cesarano, J., and Lewis, J.A.: Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18, 54295437 (2002).Google Scholar
Duoss, E.B., Twardowski, M., and Lewis, J.A.: Sol–gel inks for direct-write assembly of functional oxides. Adv. Mater. 19, 3485 (2007).Google Scholar
Hansen, C.J., Saksena, R., Kolesky, D.B., Vericella, J.J., Kranz, S.J., Muldowney, G.P., Christensen, K.T., and Lewis, J.A.: High-throughput printing via microvascular multinozzle arrays. Adv. Mater. 25, 96102 (2013).Google Scholar
Valdevit, L., Godfrey, S.W., Schaedler, T.A., Jacobsen, A.J., and Carter, W.B.: Compressive strength of hollow microlattices: Experimental characterization, modeling, and optimal design. J. Mater. Res. 28, 24612473 (2013).CrossRefGoogle Scholar
Osanov, M. and Guest, J.K.: Topology optimization for architected materials design. Annu. Rev. Mater. Res. 46, 211233 (2016).Google Scholar
Sigmund, O.: Materials with prescribed constitutive parameters: An inverse homogenization problem. Int. J. Solids Struct. 31, 23132329 (1994).CrossRefGoogle Scholar
Sigmund, O. and Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45, 10371067 (1997).Google Scholar
Challis, V.J., Roberts, A.P., and Wilkins, A.H.: Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int. J. Solids Struct. 45, 41304146 (2008).Google Scholar
Guest, J.K. and Prevost, J.H.: Design of maximum permeability material structures. Comput. Meth. Appl. Mech. Eng. 196, 10061017 (2007).Google Scholar
Challis, V.J., Guest, J.K., Grotowski, J.F., and Roberts, A.P.: Computationally generated cross-property bounds for stiffness and fluid permeability using topology optimization. Int. J. Solid Struct. 49, 33973408 (2012).Google Scholar
Sigmund, O. and Jensen, J.S.: Systematic design of phononic band-gap materials and structures by topology optimization. Philos. Trans. R. Soc. London, Ser. A 361, 10011019 (2003).Google Scholar
Rupp, C.J., Evgrafov, A., Maute, K., and Dunn, M.L.: Design of phononic materials/structures for surface wave devices using topology optimization. Struct. Multidiscip. Optim. 34, 111121 (2007).Google Scholar
Prasad, J. and Diaz, A.R.: Viscoelastic material design with negative stiffness components using topology optimization. Struct. Multidiscip. Optim. 38, 583597 (2008).Google Scholar
Andreassen, E. and Jensen, J.S.: Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials. Struct. Multidiscip. Optim. 49, 695705 (2013).Google Scholar
Asadpoure, A., Tootkaboni, M., and Valdevit, L.: Topology optimization of multiphase architected materials for energy dissipation. Comput. Method. Appl. M. 325, 314329 (2017).Google Scholar
Diaz, A.R. and Sigmund, O.: A topology optimization method for design of negative permeability metamaterials. Struct. Multidiscip. Optim. 41, 163177 (2010).Google Scholar
Zhou, S., Li, W., Chen, Y., Sun, G., and Li, Q.: Topology optimization for negative permeability metamaterials using level-set algorithm. Acta Mater. 59, 26242636 (2011).Google Scholar
Carstensen, J.V., Lotfi, R., Guest, J.K., Chen, W., and Schroers, J.: Topology optimization of cellular materials with maximized energy absorption. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (ASME, Boston, Massachusetts, 2015); p. V02BT03A014.Google Scholar
Clausen, A., Wang, F., Jensen, J.S., Sigmund, O., and Lewis, J.A.: Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv. Mater. 27, 55235527 (2015).Google Scholar
Cadman, J.E., Zhou, S., Chen, Y., and Li, Q.: On design of multi-functional microstructural materials. J. Mater. Sci. 48, 5166 (2013).Google Scholar