Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T12:44:58.105Z Has data issue: false hasContentIssue false

Interface structure and solute segregation behavior in SiC/2124 and SiC/6061 Al composites exhibiting high-strain-rate superplasticity

Published online by Cambridge University Press:  31 January 2011

Woo-Jin Kim*
Affiliation:
Department of Materials Science and Engineering, Hong-Ik University, 72–1, Sangsu-Dong, Mapo-Ku, Seoul, 121–791, Korea
Dong-Wha Kum
Affiliation:
Division of Materials, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130–650, Korea
Ha-Guk Jeong
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

Interface structure and solute-segregation behavior in the high-strain-rate superplastic SiCp/2124 and SiCp/6061 Al composites were investigated. Evidence for interfacial reaction between reinforcement and Al matrix, which was evident in the superplastic Si3N4p,w/2124 Al and Si3N4p,w/6061 Al composites, could not be detected in the current SiC-reinforced Al composites. Instead, strong solute segregation was observed at SiC/Al interfaces. Extensive formation of whiskerlike fibers was observed at the fractured surface of tensile samples above the critical temperature where particle weakening began to be seen. These results suggest that partial melting occurs at the solute-enriched region near SiC interfaces and is responsible for the particle weakening. The absence of reaction phase in the SiC-reinforced composite may explain why no endothermic peak for partial melting appears in its differential scanning calorimetry curve and why its optimum temperature for superplasticity is generally higher than that of the Si3N4-reinforced composite.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nieh, T.G., Henshall, C.A., and Wadsworth, J., Scr. Metall. 18, 1405 (1984).CrossRefGoogle Scholar
2Mabuchi, M., Higashi, K., and Langdon, T.G., Acta Metall. Mater. 42, 1739 (1994).CrossRefGoogle Scholar
3Han, B.Q. and Chan, K.C., Scr. Mater. 36, 593 (1997).CrossRefGoogle Scholar
4Mabuchi, M., Higashi, K., Okada, Y., Tanimura, S., Imai, T., and Kubo, K., Scr. Metall. Mater. 25, 2517 (1991).CrossRefGoogle Scholar
5Bieler, T.R. and Mukherjee, A.K., Mater. Sci. Eng. A 128, 171 (1990).CrossRefGoogle Scholar
6Mabuchi, M., Higashi, K., Inoue, K., Tanimura, S., Imai, T., and Kubo, K., Mater. Sci. Eng. A 156, L9 (1992).CrossRefGoogle Scholar
7Higashi, K., Okada, T., Mukai, T., and Tanimura, S., Mater. Sci. Eng. A 195, L1 (1992).CrossRefGoogle Scholar
8Zahid, G.H., Todd, R.I., and Prangnell, P.B., Mater. Sci. Technol. 14, 901 (1998).CrossRefGoogle Scholar
9Kim, W.J., Yeon, J.H., Shin, D.H., and Hong, S.H., Mater. Sci. Eng. A 269, 142 (1999).CrossRefGoogle Scholar
10Kim, W.J., Lee, Y.S., Moon, S.J., and Hong, S.H., Mater. Sci. Technol. 16, 675 (2000).CrossRefGoogle Scholar
11Kim, W.J. and Sherby, O.D., Acta Mater. 48, 1763 (2000).CrossRefGoogle Scholar
12Mabuchi, M., Iwasaki, H., Jeong, H.G., Hiraga, K., and Higashi, K., J. Mater. Res. 12, 2332 (1997).CrossRefGoogle Scholar
13Higashi, K., Nieh, T.G., Mabuchi, M., and Wadsworth, J., Scr. Metall. 32, 1079 (1995).CrossRefGoogle Scholar
14Jeong, H.G., Hiraga, K., Mabuchi, M., and Higashi, K., Acta Metall. Mater. 46, 6009 (1998).CrossRefGoogle Scholar
15Jeong, H.G., Hiraga, K., Mabuchi, M., and Higashi, K., Philos. Mag. Lett. 74, 73 (1996).CrossRefGoogle Scholar
16Koike, J., Mabuchi, M., and Higashi, K., Acta Metall. Mater. 43, 199 (1995).CrossRefGoogle Scholar
17Kim, W.J., (unpublished work).Google Scholar
18Kim, W.J., Hong, S.H., and Lee, J.H., Mater. Sci. Eng. A 298, 166 (2001).CrossRefGoogle Scholar
19Frost, H.J. and Ashby, M.F., Deformation Mechanism Maps (Per-gamon Press, Oxford, United Kingdom, 1982), p. 21.Google Scholar
20Li, Y. and Langdon, T.G., Acta Mater. 46, 3937 (1998).CrossRefGoogle Scholar
21Mishra, R.S., Bieler, T.R., and Mukherjee, A.K., Acta Metall. Mater. 43, 877 (1995).CrossRefGoogle Scholar
22Mishra, R.S., Bieler, T.R., and Mukherjee, A.K., Acta Metall. Mater. 45, 561 (1997).CrossRefGoogle Scholar
23Mabuchi, M. and Higashi, K., Scr. Mater. 34, 1893 (1996).CrossRefGoogle Scholar
24Mabuchi, M. and Higashi, K., Mater. Trans. JIM 35, 399 (1994).CrossRefGoogle Scholar
25Strangwood, M., Hippsley, C.A., and Lewandowski, J.J., Scr. Metall. Mater. 24, 1483 (1990).CrossRefGoogle Scholar
26Blandin, J.J., Hong, B., Barloteaux, A., Suery, M., and Lesperance, G., Acta Mater. 44, 2317 (1996).CrossRefGoogle Scholar
27Massalski, T.B., Okamato, H., Subramanian, H., and Kacprzak, L., Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Ma-terials Park, OH, 1990), Vol. 1, p. 170.Google Scholar
28Massalski, T.B., Okamato, H., Subramanian, H., and Kacprzak, L., Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Ma-terials Park, OH, 1990), Vol. 1, p. 221.Google Scholar
29Villars, P., Prince, A., and Okamoto, H.,Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990), Vol. 4, p. 3912.Google Scholar
30Barin, I., Thermochemical data of pure substances (VCH, Wein-heim, Germany, 1989), Part II.Google Scholar
31Lee, J.C., Park, S.B., Seok, H.K., Oh, C.S., and Lee, H.I., Acta Mater. 46, 2635 (1998).CrossRefGoogle Scholar