Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T23:57:51.030Z Has data issue: false hasContentIssue false

Influence of annealing treatments on microstructure and toughness of liquid-phase-sintered silicon carbide

Published online by Cambridge University Press:  26 November 2012

D. Sciti
Affiliation:
CNR-IRTEC, Research Institute for Ceramics Technology, Faenza, Italy
A. Bellosi
Affiliation:
CNR-IRTEC, Research Institute for Ceramics Technology, Faenza, Italy
Get access

Abstract

The possibility of an in situ toughening through the β → α phase transition was evaluated on liquid-phase-sintered SiC (with Al2O3 and Y2O3 as additives). Dense hot-pressed materials with an equiaxed morphology were annealed at 1850, 1900 and 1950 °C for 1 to 4 h so the effect of time, temperature, composition, and amount of second phase could be investigated. Microstructure features revealed that 1900 °C was the best temperature in producing a high percentage of elongated grains with limited grain coarsening and reduction of second-phase pockets. Mean grain size and aspect ratios increased from 0.5 to 1.5 μm and to 5, respectively, during the first 2 h of treatment at 1900 °C and then maintained a constant value. The amount and composition of second phase influenced the rate of transformation from equiaxed to elongated grain morphology. Toughness increased from 3.3 to 5.5 Mpa · m1/2 in 1900 °C annealed samples due to a crack-deflection mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Motzfeld, K., in Proceedings of the International Conference on Engineering Ceramics ’92, edited by Haviar, M. (Reproprint, Slovakia, Bratislava, 1993), p.7.Google Scholar
2.Dressler, W. and Riedel, R., Int. J. Refractory Metals and Hard Materials 15, 13 (1997).CrossRefGoogle Scholar
3.Kleebe, H-J., J. Eur. Ceram Soc. 10, 151 (1992).CrossRefGoogle Scholar
4.Lange, F.F., J. Mater. Sci. 10, 314 (1975).CrossRefGoogle Scholar
5.Van Dijen, F.K. and Mayer, E., J. Eur. Ceram Soc. 16, 413 (1996).CrossRefGoogle Scholar
6.Falk, L.K., J. Europ. Ceram. Soc. 17, 983 (1997).CrossRefGoogle Scholar
7.Falk, L.K.L., in Third Euro-Ceramics, edited by Duran, P. and Fernandez, J.F. (Faenza Editrice Iberica, Castellon de la Plana, Spain, 1993), Vol.1, p. 889Google Scholar
8.Sciti, D. and Bellosi, A., J. Mater. Sci. 35, 1 (2000).Google Scholar
9.Bellosi, A., Sciti, D., Melandri, C., and Dalle Fabbriche, D., in Syntheses and Methodologies in Inorganic Chemistry, New Compounds and Materials (Litografia LA PHOTOGRAPH, Padova, Italy, 1997), Vol. 8, p. 273Google Scholar
10.Lee, S.K., Kim, Y.C., and Kim, C.H., J. Mater. Sci. 29, 5321 (1994).CrossRefGoogle Scholar
11.Kim, Y-W., Mitomo, M., Emoto, H., and Lee, J-G., J. Am. Ceram. Soc. 81, 3136 (1998).CrossRefGoogle Scholar
12.Lee, S.K., Kim, Y.C., and Kim, C.H., J. Mater. Sci. 29, 5321 (1994).CrossRefGoogle Scholar
13.Kim, Y-W., Mitomo, M., and Hirotsuru, H., J. Am. Ceram. Soc. 80, 99 (1997).CrossRefGoogle Scholar
14.Lee, K., Kim, H.H., Lee, E.G., and Kim, H., in Key Enginering Materials, (Trans Tech, Zurich, Switzerland, 1999), Vols. 161–163, p. 263.Google Scholar
15.Mitomo, M., in Key Enginering Materials, edited by Niihara, K., Sekino, T., Yasuda, E., and Sasa, T. (Trans Tech, Zurich, Switzerland, 1999), Vols. 161–163, p. 53.Google Scholar
16.Zhan, G-D., Mitomo, M., Sato, H., and Kim, Y-W in Key Enginering Materials, edited by Niihara, K., Sekino, T., Yasuda, E., and Sasa, T. (Trans Tech, Zurich, Switzerland, 1999), Vols. 161–163, p. 243.Google Scholar
17.Kim, Y-W., Mitomo, M., and Hiritsuru, H., J. Am. Ceram. Soc. 78, 3145 (1995).CrossRefGoogle Scholar
18.Hoffmann, M.J. and Nader, M., in Engineering Ceramics ’96: Higher reliability through processing, edited by Babini, G.N., Haviar, M., and Šajgalík, P.. (Kluwer Academic, Dordrecht, The Netherlands, 1997), p.133.CrossRefGoogle Scholar
19.Kim, D-H. and Kim, C.H., J. Am. Ceram. Soc. 73, 1431 (1990).CrossRefGoogle Scholar
20.Padture, N.P., J. Am. Ceram. Soc. 77, 519 (1994).CrossRefGoogle Scholar
21.Padture, N.P. and Lawn, B.R., J. Am. Ceram. Soc. 77, 2518 (1994).CrossRefGoogle Scholar
22.Kim, Y-W., Kim, W., and Cho, D-H., J.Mater. Sci. Lett. 16, 1384 (1997).CrossRefGoogle Scholar
23.Cho, D-H., Kim, Y-W., and Kim, W., J. Mater. Sci. 32, 4777 (1997).CrossRefGoogle Scholar
24.Lee, J-K., Tanaka, H., and Kim, H., J.Mater. Sci. Lett. 15, 409 (1996).CrossRefGoogle Scholar
25.Mitomo, M., Kim, Y-W., and Hirotsuru, H., J. Mater. Res. 11, 1601 (1996).CrossRefGoogle Scholar
26.Evans, A.G. and Charles, E.A., J. Am. Ceram Soc. 59, 371 (1976)CrossRefGoogle Scholar
27.Ye, H., Pujar, V.V., and Padture, N.P., Acta Mater. 47, 481 (1999).CrossRefGoogle Scholar
28.Sigl, L.S. and Kleebe, H-J., J. Am. Ceram Soc. 76, 773 (1993).CrossRefGoogle Scholar
29.Tanaka, H. and Iyi, N., J.Ceram. Soc. Jpn., Int. Ed. 101, 1281 (1993).Google Scholar