Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T12:27:09.816Z Has data issue: false hasContentIssue false

Hydrothermal growth of hydroxyapatite single crystals under natural convection

Published online by Cambridge University Press:  31 January 2011

K. Teraoka*
Affiliation:
National Industrial Research Institute of Nagoya (NIRIN), 1-1 Hirate, Kita, Nagoya, Japan
A. Ito
Affiliation:
National Institute for Advanced Interdisciplinary Research (MEL)
K. Onuma
Affiliation:
National Institute for Advanced Interdisciplinary Research (NIMC)
T. Tateishi
Affiliation:
National Institute for Advanced Interdisciplinary Research (MEL)
S. Tsutsumi
Affiliation:
Institute of Earth Science, School of Education, Waseda University
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Whiskerlike-shaped hydroxyapatite single crystals with the calcium-deficient nature were hydrothermally grown under natural convection by using a temperature-gradient-applied pressure vessel. With this method, crystals grew thinner with a smaller tapering angle than those grown under the nonconvection. Maximum length of the crystals grown under natural convection was 8.3 nm. The grown crystals survived without fracture through at least ten times maximum indentation (25 µm) of the three-point bending tests, showing the maximum bending angle of 62°. Average tensile strength of the crystals was 410.0 MPa.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cowin, S. C., Bone Mechanics (CRC Press, Inc., Boca Raton, FL, 1989), p. 100.Google Scholar
2.Jarcho, M., Boren, C. H., Thomas, M. B., Bobick, J., and Kay, J. F., J. Mater. Sci. 11, 2027 (1976).CrossRefGoogle Scholar
3.Akao, M., Aoki, H., and Kato, K., J. Mater. Sci. 16, 809 (1981).CrossRefGoogle Scholar
4.Ioku, K., Yoshimura, M., and Sōmiya, S., Biomaterials 11, 57 (1990).CrossRefGoogle Scholar
5.Halouani, R., Bernache-Assolant, D., Champion, E., and Ababou, A., J. Mater. Sci. Mater. Med. 5, 563 (1994).CrossRefGoogle Scholar
6.Knowles, J. C. and Bonfield, W., J. Biomed. Mater. Res. 27, 1591 (1993).CrossRefGoogle Scholar
7.Eysel, W. and Roy, D.M., J. Cryst. Growth 20, 245 (1973).CrossRefGoogle Scholar
8.Mengeot, M., Harvill, M.L., and Gilliam, O. R., J. Cryst. Growth 19, 199 (1973).CrossRefGoogle Scholar
9.Roy, D. M., Mater. Res. Bull. 6, 1337 (1971).CrossRefGoogle Scholar
10.Arends, J., Schuthof, J., van der Linden, W.H., Bennema, P., and van den Berg, P.J., J. Cryst. Growth 46, 213 (1979).CrossRefGoogle Scholar
11.Ito, A., Nakamura, S., Aoki, H., Akao, M., Teraoka, K., Tsutsumi, S., Onuma, K., and Tateishi, T., J. Cryst. Growth 163, 311 (1996).CrossRefGoogle Scholar
12.Ito, A., Teraoka, K., Tsutsumi, S., and Tateishi, T., in Bioceramics 9: Single Crystal Hydroxyapatite: Preparation, Composition and Mechanical Properties, edited by Kokubo, T., Nakamura, T., and Miyaji, F. (The Int. Symp. on Ceramics in Medicine Proc. 9, Otsu, Japan, 1996), p. 189.Google Scholar
13.Teraoka, K., Ito, A., Onuma, K., Tateishi, T., and Tsutsumi, S., J. Biomed. Mater. Res. 34, 269 (1997).3.0.CO;2-D>CrossRefGoogle Scholar
14.Teraoka, K., Ito, A., Maekawa, K., Onuma, K., Tateishi, T., and Tsutsumi, S., Dent, J.. Res. in press.Google Scholar
15.Perloff, A. and Posner, A. S., Science 124, 583 (1956).CrossRefGoogle Scholar
16.Fujii, O., Ito, A., Otsuka, R., Aoki, H., and Akao, M., Gypsum and Lime 219, 68 (1989).Google Scholar
17.Murphy, J. and Riley, J. P., Anal. Chem. Acta 27, 31 (1962).CrossRefGoogle Scholar
18.Iler, R. K., The Chemistry of Silica (John Wiley & Sons, New York, 1979), p. 63.Google Scholar
19.Terry, A. and Feriman, S. W., Nature 295, 511 (1982).Google Scholar
20.Elliot, J. C., Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Elsevier, Amsterdam, 1994), p. 30.Google Scholar
21.van Rosmalen, R. J., van der Linden, W.H., Dobbinga, D., and Visser, D., Kristall Tech. 13, 17 (1978).CrossRefGoogle Scholar
22.Brown, W.E. and Chow, L. C., J. Dent. Res. 62 (special issue), 672 (1983).Google Scholar
23.Doi, Y., Takezawa, Y., Shibata, S., Wakamatsu, N., Kamemizu, H., and Goto, T., Dent, J. J.. Mater. 6, 53 (1987).Google Scholar
24.Walsh, D., Kingston, J. L., Heywood, B.R., and Mann, S., J. Cryst. Growth 133, 1 (1993).CrossRefGoogle Scholar
25.Kirn, J. F. and Leidheiser, H. Jr, J. Cryst. Growth 2, 111 (1968).CrossRefGoogle Scholar
26.Terpstra, R.A., Bennema, P., Hartman, P., Woensdregt, C. F., Perdok, W. G., and Senecha, M. L., J. Cryst. Growth 78, 4681 (1986).CrossRefGoogle Scholar