Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T02:36:04.941Z Has data issue: false hasContentIssue false

Highly oriented diamond growth on positively biased Si substrates

Published online by Cambridge University Press:  31 January 2011

Te-Fu Chang
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan 300
Li Chang*
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan 300
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Deposition of highly textured diamond films on Si(001) has been achieved by using positively bias-enhanced nucleation in microwave plasma chemical vapor deposition. During the biasing period, an additional glow discharge due to the dc plasma effect appeared between the electrode and the substrate. The discharge is necessary for enhanced nucleation of diamond. X-ray diffraction, scanning electron microscopy, and cross-sectional transmission electron microscopy (XTEM) were used to characterize the microstructure of the diamond films on Si. The results show the morphology of diamond grains in square shape with strong diamond (001) texture. XTEM reveals that an amorphous interlayer formed on the smooth Si surface before diamond nucleation.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
2.Stoner., B.R., Ma., G-H.M., Wolter., S.D., and Glass., J.T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
3.Stoner., B.R. and Glass., J.T., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
4.Stoner., B.R., Ma., G-H.M., Wolter., S.D., Zhu, W., Wang, Y-C., Davis., R.F., and Glass., J.T., Diamond Relat. Mater. 2, 142 (1993).CrossRefGoogle Scholar
5.Jiang, X. and Klages., C.P., Diamond Relat. Mater. 2, 1112 (1993).CrossRefGoogle Scholar
6.Chang, L., Lin., T.S., and Chen., J.L., Appl. Phys. Lett. 62, 3444 (1993).CrossRefGoogle Scholar
7.Stoner., B.R., Sahaida., S.R., and Bade., J.P., J. Mater. Res. 8, 1334 (1993).CrossRefGoogle Scholar
8.Chen., C.J., Chang, L., Lin., T.S., and Chen., F.R., J. Mater. Res. 10, 3041 (1995).CrossRefGoogle Scholar
9.Stockel, R., Stammler, M., Janischowsky, K., and Ley, L., J. Appl. Phys. 83, 5433 (1998).CrossRefGoogle Scholar
10.Katoh, M., Aoki, M., and Kawarada, H., Jpn. J. Appl. Phys. 33, L196 (1997).Google Scholar
11.Suzuki, K., Sawabe, A., and Inuzuka, T., Jpn. J. Appl. Phys. 29, 153 (1990).CrossRefGoogle Scholar
12.Powder Diffraction File No. 06-0675, JCPDS (Joint Committee on Powder Diffraction Standard), International Centre for Diffraction Data, Newton Square, PA (1997).Google Scholar
13.Robertson, J., Gerber, J., Sattel, S., Neiler, M., Jung, K., and Ehrhardt, H., Appl. Phys. Lett. 66, 3287 (1995).CrossRefGoogle Scholar
14.Sawabe, A. and Inutaka, T., Appl. Phys. Lett. 46, 146 (1985).CrossRefGoogle Scholar