Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T12:58:14.774Z Has data issue: false hasContentIssue false

High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode

Published online by Cambridge University Press:  21 February 2018

Rahul Pai
Affiliation:
Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
Vibha Kalra*
Affiliation:
Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We develop an asymmetric aqueous supercapacitor using iron oxide anode and cobalt oxide cathode. The anode was fabricated using electrospinning of carbon precursor/iron oxide precursor blend followed by pyrolysis and in situ electrochemical conversion (to oxide) to form the binder-free and freestanding composite anode which delivered a capacitance of 460 F/g at 1 A/g and retained 82% capacitance after 5000 cycles. The superior performance is attributed to easy electrolyte accessibility as well as the porous fibrous carbon morphology, facilitating volume expansion of iron oxide. The cobalt oxide cathode was prepared using a simple chemical synthesis technique. The electrodes were chosen based on high over potential to water splitting reactions in 6 M KOH electrolyte resulting in a potential window of 1.6 V. The asymmetric device operated in 1.6 V achieved a capacitance of 94.5 F/g at 0.5 A/g while retaining 75% of its capacitance after 12,000 cycles, delivering energy and power densities of 40.53 W h/kg and 2432 W/kg, respectively.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Tianyu Liu

References

REFERENCES

Patrice Simon, Y.G.: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).Google Scholar
Frackowiak, E.: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774 (2007).Google Scholar
Salunkhe, R.R., Lee, Y.H., Chang, K.H., Li, J.M., Simon, P., Tang, J., Torad, N.L., Hu, C.C., and Yamauchi, Y.: Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chemistry 20, 13838 (2014).Google Scholar
Tang, X., Jia, R., Zhai, T., and Xia, H.: Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 27518 (2015).Google Scholar
Bao, L. and Li, X.: Towards textile energy storage from cotton T-shirts. Adv. Mater. 24, 3246 (2012).Google Scholar
Lang, X., Hirata, A., Fujita, T., and Chen, M.: Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232 (2011).Google Scholar
Peng, X., Peng, L., Wu, C., and Xie, Y.: Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 43, 3303 (2014).Google Scholar
Liu, J., Zhang, L., Wu, H.B., Lin, J., Shen, Z., and Lou, X.W.: High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci. 7, 3709 (2014).Google Scholar
El-Kady, M.F. and Kaner, R.B.: Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013).Google Scholar
Zhi, M., Xiang, C., Li, J., Li, M., and Wu, N.: Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 5, 72 (2013).Google Scholar
Bao, L., Zang, J., and Li, X.: Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett. 11, 1215 (2011).CrossRefGoogle ScholarPubMed
Demarconnay, L., Calvo, E.G., Timperman, L., Anouti, M., Lemordant, D., Raymundo-Piñero, E., Arenillas, A., Menéndez, J.A., and Béguin, F.: Optimizing the performance of supercapacitors based on carbon electrodes and protic ionic liquids as electrolytes. Electrochim. Acta 108, 361 (2013).Google Scholar
Liu, C., Li, F., Ma, L.P., and Cheng, H.M.: Advanced materials for energy storage. Adv. Mater. 22, E28 (2010).Google Scholar
Mohana Reddy, A.L., Gowda, S.R., Shaijumon, M.M., and Ajayan, P.M.: Hybrid nanostructures for energy storage applications. Adv. Mater. 24, 5045 (2012).Google Scholar
Khadke, P.S. and Krewer, U.: Performance losses at H2/O2 alkaline membrane fuel cell. Electrochem. Commun. 51, 117 (2015).CrossRefGoogle Scholar
Xia, H., Shirley Meng, Y., Yuan, G., Cui, C., and Lu, L.: A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem. Solid-State Lett. 15, A60A63 (2012).Google Scholar
Wang, F., Xiao, S., Hou, Y., Hu, C., Liu, L., and Wu, Y.: Electrode materials for aqueous asymmetric supercapacitors. RSC Adv. 3, 1305913084 (2013).Google Scholar
Singh, A. and Chandra, A.: Significant performance enhancement in asymmetric supercapacitors based on metal oxides, carbon nanotubes and neutral aqueous electrolyte. Sci. Rep. 5, 15551 (2015).Google Scholar
Tang, W., Liu, L., Tian, S., Li, L., Yue, Y., Wu, Y., and Zhu, K.: Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem. Commun. 47, 10058 (2011).Google Scholar
Simotwo, S.K., DelRe, C., and Kalra, V.: Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl. Mater. Interfaces 8, 21261 (2016).Google Scholar
Zhou, C., Zhang, Y., Li, Y., and Liu, J.: Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13, 2078 (2013).Google Scholar
Tai, Z., Lang, J., Yan, X., and Xue, Q.: Mutually enhanced capacitances in carbon nanofiber/cobalt hydroxide composite paper for supercapacitor. J. Electrochem. Soc. 159, A485A491 (2012).Google Scholar
Simotwo, S.K. and Kalra, V.: Polyaniline-based electrodes: recent application in supercapacitors and next generation rechargeable batteries. Curr. Opin. Chem. Eng. 13, 150160 (2016).Google Scholar
Lokhande, C.D., Dubal, D.P., and Joo, O-S.: Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 11, 255 (2011).Google Scholar
Zhao, X., Sanchez, B.M., Dobson, P.J., and Grant, P.S.: The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3, 839 (2011).Google Scholar
Wang, G., Zhang, L., and Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).Google Scholar
Devan, R.S., Patil, R.A., Lin, J-H., and Ma, Y-R.: One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 22, 3326 (2012).Google Scholar
Zeng, Y., Yu, M., Meng, Y., Fang, P., Lu, X., and Tong, Y.: Iron-based supercapacitor electrodes: Advances and challenges. Adv. Energy Mater. 6, 1601053 (2016).Google Scholar
Salunkhe, R.R., Tang, J., Kamachi, Y., Nakato, T., Kim, J.H., and Yamauchi, Y.: Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 9, 6288 (2015).Google Scholar
Zhang, L.L. and Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009).Google Scholar
Qu, Q., Yang, S., and Feng, X.: 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23, 5574 (2011).Google Scholar
Guan, D., Gao, Z., Yang, W., Wang, J., Yuan, Y., Wang, B., Zhang, M., and Liu, L.: Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material. Mater. Sci. Eng., B 178, 736 (2013).Google Scholar
Wang, X., Yan, C., Sumboja, A., and Lee, P.S.: High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor. Nano Energy 3, 119 (2014).Google Scholar
Li, W., Wang, S., Xin, L., Wu, M., and Lou, X.: Single-crystal β-NiS nanorod arrays with a hollow-structured Ni3S2 framework for supercapacitor applications. J. Mater. Chem. A 4, 7700 (2016).Google Scholar
Yang, P., Ding, Y., Lin, Z., Chen, Z., Li, Y., Qiang, P., Ebrahimi, M., Mai, W., Wong, C.P., and Wang, Z.L.: Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731 (2014).Google Scholar
Liu, T., Ling, Y., Yang, Y., Finn, L., Collazo, E., Zhai, T., Tong, Y., and Li, Y.: Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices. Nano Energy 12, 169 (2015).Google Scholar
Lin, Y., Wang, X., Qian, G., and Watkins, J.J.: Additive-driven self-assembly of well-ordered mesoporous carbon/iron oxide nanoparticle composites for supercapacitors. Chem. Mater. 26, 2128 (2014).Google Scholar
Zeng, Y., Han, Y., Zhao, Y., Zeng, Y., Yu, M., Liu, Y., Tang, H., Tong, Y., and Lu, X.: Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater. 5, 1402176 (2015).Google Scholar
Lu, X., Zeng, Y., Yu, M., Zhai, T., Liang, C., Xie, S., Balogun, M.S., and Tong, Y.: Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26, 3148 (2014).Google Scholar
Xia, X., Hao, Q., Lei, W., Wang, W., Sun, D., and Wang, X.: Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors. J. Mater. Chem. 22, 16844 (2012).Google Scholar
Wang, H., Xu, Z., Yi, H., Wei, H., Guo, Z., and Wang, X.: One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 7, 86 (2014).Google Scholar
Li, R., Wang, Y., Zhou, C., Wang, C., Ba, X., Li, Y., Huang, X., and Liu, J.: Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv. Funct. Mater. 25, 5384 (2015).Google Scholar
Zhai, T., Wan, L., Sun, S., Chen, Q., Sun, J., Xia, Q., and Xia, H.: Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29, 1604167 (2017).Google Scholar
Ujimine, K. and Tsutsumi, A.: Electrochemical characteristics of iron carbide as an active material in alkaline batteries. J. Power Sources 160, 1431 (2006).Google Scholar
Bonnet, F., Ropital, F., Lecour, P., Espinat, D., Huiban, Y., Gengembre, L., Berthier, Y., and Marcus, P.: Study of the oxide/carbide transition on iron surfaces during catalytic coke formation. Surf. Interface Anal. 34, 418 (2002).Google Scholar
Grosvenor, A.P., Kobe, B.A., and McIntyre, N.S.: Studies of the oxidation of iron by water vapour using X-ray photoelectron spectroscopy and QUASES™. Surf. Sci. 572, 217 (2004).Google Scholar
Allen, G.C., Curtis, M.T., Hooper, A.J., and Tucker, P.M.: X-ray photoelectron spectroscopy of iron–oxygen systems. J. Chem. Soc., Dalton Trans. 1974, 1525 (1974).Google Scholar
Jia, Y., Luo, T., Yu, X-Y., Sun, B., Liu, J-H., and Huang, X-J.: Synthesis of monodispersed α-FeOOH nanorods with a high content of surface hydroxyl groups and enhanced ion-exchange properties towards As(V). RSC Adv. 3, 15805 (2013).Google Scholar
Baltrusaitis, J., Cwiertny, D.M., and Grassian, V.H.: Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Phys. Chem. Chem. Phys. 9, 5542 (2007).Google Scholar
Wang, X., Li, M., Chang, Z., Yang, Y., Wu, Y., and Liu, X.: Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl. Mater. Interfaces 7, 2280 (2015).Google Scholar
Abouali, S., Garakani, M.A., Zhang, B., Xu, Z.L., Heidari, E.K., Huang, J.Q., Huang, J., and Kim, J.K.: Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl. Mater. Interfaces 7, 13503 (2015).Google Scholar
Shan, Y. and Gao, L.: Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Mater. Chem. Phys. 103, 206 (2007).Google Scholar
Yuan, C., Yang, L., Hou, L., Shen, L., Zhang, F., Li, D., and Zhang, X.: Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. J. Mater. Chem. 21, 1818318185 (2011).Google Scholar
Yan, J., Wei, T., Qiao, W., Shao, B., Zhao, Q., Zhang, L., and Fan, Z.: Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 55, 6973 (2010).Google Scholar
Dai, C.S., Chien, P.Y., Lin, J.Y., Chou, S.W., Wu, W.K., Li, P.H., Wu, K.Y., and Lin, T.W.: Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 5, 12168 (2013).CrossRefGoogle Scholar
Li, X., Li, Q., Wu, Y., Rui, M., and Zeng, H.: Two-dimensional, porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 19316 (2015).Google Scholar
Tang, C.H., Yin, X., and Gong, H.: Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core–shell electrode. ACS Appl. Mater. Interfaces 5, 10574 (2013).Google Scholar
Shen, L., Wang, J., Xu, G., Li, H., Dou, H., and Zhang, X.: NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 5, 1400977 (2015).Google Scholar
Li, Y., Cao, L., Qiao, L., Zhou, M., Yang, Y., Xiao, P., and Zhang, Y.: Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J. Mater. Chem. A 2, 6540 (2014).CrossRefGoogle Scholar
Wu, Z., Pu, X., Ji, X., Zhu, Y., Jing, M., Chen, Q., and Jiao, F.: High energy density asymmetric supercapacitors from mesoporous NiCo2S4 nanosheets. Electrochim. Acta 174, 238 (2015).Google Scholar
Chen, H., Jiang, J., Zhang, L., Xia, D., Zhao, Y., Guo, D., Qi, T., and Wan, H.: In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J. Power Sources 254, 249 (2014).Google Scholar
Chen, H., Jiang, J., Zhao, Y., Zhang, L., Guo, D., and Xia, D.: One-pot synthesis of porous nickel cobalt sulphides: Tuning the composition for superior pseudocapacitance. J. Mater. Chem. A 3, 428 (2015).Google Scholar
Fan, H., Niu, R., Duan, J., Liu, W., and Shen, W.: Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 19475 (2016).Google Scholar
Supplementary material: File

Pai and Kalra supplementary material

Pai and Kalra supplementary material 1

Download Pai and Kalra supplementary material(File)
File 217 KB