Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T18:00:46.005Z Has data issue: false hasContentIssue false

Growth of (111)-oriented Pb(Zr,Ti)O3 layers on nanocrystalline RuO2 electrodes using the sol-gel technique

Published online by Cambridge University Press:  26 November 2012

G. J. Norga*
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
S. Jin
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
Laura Fè
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
D. J. Wouters
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
H. Bender
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
H. E. Maes
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The influence of the RuO2 bottom electrode microstructure on the texture and ferroelectric properties of sol-gel PZT in RuO2/PZT/RuO2/Pt capacitors is discussed. For high growth temperatures, RuO2 has a columnar microstructure and a mixed (100)/(110) texture, attributed to epitaxial growth on Pt(111) and TiO2 (110) grains of the preannealed Pt / Ti layer. The mixed orientation of RuO2 resulted in a mixed PZT texture and slanted ferroelectric hysteresis characteristic. As the RuO2 growth temperature was reduced, the microstructure of the RuO2 layer turned to fine-grained equiaxed, with a grain size of approximately 10 nm, and PZT developed a sharp (111) texture (I111/I100 > 100) resulting in a rectangular hysteresis characteristic and a remanent polarization >30 μC/cm2. The emergence of a strong (111) fiber texture in PZT on fine-grained RuO2 shed new light on the orientation selection mechanisms in sol-gel-prepared PZT layers. Possible applications of this phenomenon for high-density ferroelectric memories with a stacked layout are briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dormans, G.J.M., Kemperman, J.H.H.M., Wolters, R.A.M., van Veldhoven, P.J., de Keijser, M.S., Janssen, R.B.F., Ulenaers, M.J.E., and Larsen, P.K., Microelectron. Eng. 29, 33 (1995).CrossRefGoogle Scholar
2.Wouters, D.J., Willems, G., Lee, E-U., and Maes, H.E., Integr. Ferroelectr. 15, 79 (1997).CrossRefGoogle Scholar
3.Brooks, K.G., Reaney, I.M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).CrossRefGoogle Scholar
4.Liu, Y. and Phulé, P.P., J. Am. Ceram. Soc. 79, 495 (1996).CrossRefGoogle Scholar
5.Chen, S.Y. and Chen, I.W., J. Amer. Ceram. Soc. 81, 97 (1998).CrossRefGoogle Scholar
6.Maeder, P., Muralt, P., and Sagalowicz, L., Thin Solid Films 345, 300 (1999).CrossRefGoogle Scholar
7.Nouwen, R., Mullens, J., Franco, D., Yperman, J., and Van Poucke, L.C., Vib. Spectrosc. 10, 291 (1996).CrossRefGoogle Scholar
8.Norga, G.J., , L., Wouters, D.J., and Maes, H.E., Appl. Phys. Lett. 76, 1318 (2000).CrossRefGoogle Scholar
9.Willems, G.J., Wouers, D.J., Maes, H.E., and Nouwen, R., Integr. Ferroelectr. 15, 19 (1997).CrossRefGoogle Scholar
10.Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S., Scalese, S., Naumovic, D., Agostino, R.G., Xanthopoulos, N., Mathieu, H.J., Patthey, L., and Bullock, E.L., J. Appl. Phys. 83, 3835 (1998).CrossRefGoogle Scholar
11.Chopra, K.L., Thin Film Phenomena (McGraw Hill, New York, 1969), p. 143.Google Scholar