Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T20:45:42.808Z Has data issue: false hasContentIssue false

Growth and characterization of conductive SrRuO3 and LaNiO3 multilayers on textured Ni tapes for high-Jc Yba2Cu3O7–delta; coated conductors

Published online by Cambridge University Press:  31 January 2011

T. Aytug
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
B. W. Kang
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
C. Cantoni
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
E. D. Specht
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
M. Paranthaman
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
A. Goyal
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. K. Christen
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. T. Verebelyi
Affiliation:
American Superconductor Corporation, Two Technology Drive, Westborough, Massachusetts 01581
J. Z. Wu
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045
R. E. Ericson
Affiliation:
3M Company, St. Paul, Minnesota 55144
C. L. Thomas
Affiliation:
3M Company, St. Paul, Minnesota 55144
C-Y. Yang
Affiliation:
Department of Materials Science and Engineering and Applied Superconductivity Center, University of Wisconsin—Madison, Madison, Wisconsin 53706
S. E. Babcock
Affiliation:
Department of Materials Science and Engineering and Applied Superconductivity Center, University of Wisconsin—Madison, Madison, Wisconsin 53706
Get access

Abstract

Power applications of high-temperature superconducting (HTS) coated conductors will require stabilization against thermal runaway. We have developed conductive buffer layers to electrically couple the HTS layer to the underlying metal substrate. The structure comprises the layer sequence of SrRuO3 (SRO) on LaNiO3 (LNO) on biaxially textured Ni substrates. We report baseline investigations of compatibility of SRO/LNO multilayer structure with processing of Yba2Cu3O7−δ (YBCO) and demonstrate biaxially textured YBCO films on conductively buffered Ni tapes. These YBCO coatings exhibit self-field Jc values as high as 1.3 × 106 A/cm2 at 77 K, and the entire structure (HTS + conductive buffers + metal substrate) shows good electrical connectivity. These results demonstrate that SRO/LNO buffer layers may provide a basis for stabilized coated conductors.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hatfield, E., and Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
2Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., and List, F.A., Science 274, 755 (1996).CrossRefGoogle Scholar
3Carlson, C.M., Price, J.C., Parilla, P.A., Ginley, D.S., Niles, D., Blaugher, R.D., Goyal, A., Paranthaman, M., Kroeger, D.M., and Christen, D.K., Physica C 304, 82 (1998).CrossRefGoogle Scholar
4Paranthaman, M., Lee, D.F., Goyal, A., Specht, E.D., Martin, P.M., Cui, X., Mathis, J.E., Feenstra, R., Christen, D.K., and Kroeger, D.M., Supercond. Sci. Technol. 12, 319 (1999).Google Scholar
5Cantoni, C., Aytug, T., Verebelyi, D.T., Paranthaman, M., Specht, E.D., Norton, D.P., and Christen, D.K., IEEE Trans. Appl. Supercond. 11, 3309 (2001).CrossRefGoogle Scholar
6He, Q., Christen, D.K., Feenstra, R., Norton, D.P., Paranthaman, M., Specht, E.D., Lee, D.F., Goyal, A., and Kroeger, D.M., Physica C 314, 105 (1999).CrossRefGoogle Scholar
7Aytug, T., Wu, J.Z., Cantoni, C., Verebelyi, D.T., Specht, E.D., Paranthaman, M., Norton, D.P., Christen, D.K., Erickson, R.E., and Thomas, C.L., Appl. Phys. Lett. 76, 760 (2000).CrossRefGoogle Scholar
8Eom, C.B., Van, R.B. Dover, Philips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., and Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
9Sagoi, M., Kinno, T., Yoshida, J., and Mizushima, K., Appl. Phys. Lett. 62, 1833 (1993).CrossRefGoogle Scholar
10Yang, C.C., Chen, M.S.. Hong, T.J., Wu, C.M., Wu, J.M., and Wu, T.B., Appl. Phys. Lett. 66, 2643 (1995).CrossRefGoogle Scholar
11Antognazza, L., Char, K., Geballe, T.H., King, L.L.H., and Sleight, A.W., Appl. Phys. Lett. 63, 1005 (1993).CrossRefGoogle Scholar
12 R. Dömel, Jia, C.L., Copetti, C., Ockenfuss, G., and Braginski, A.I., Supercond. Sci. Technol. 7, 277 (1994).Google Scholar
13Wu, X.D., Foltyn, S.R., Dye, R.C., Coulter, Y., and Muenchausen, R.E., Appl. Phys. Lett. 62, 2434 (1993).CrossRefGoogle Scholar
14Tiwari, P., Wu, X.D., Foltyn, S.R., Le, M.Q., Campbell, I.H., Dye, R.C., and Muenchausen, R.E., Appl Phys. Lett. 64, 1005 (1993).Google Scholar
15Satyalakshmi, K.M., Mallya, R.M., Ramanathan, K.V., Wu, X.D., Brainard, B., Gautier, D.C., Vasanthacharya, N.Y., and Hegde, M.S., Appl. Phys. Lett. 62, 1233 (1993).CrossRefGoogle Scholar
16Maeno, Y., Nojima, T., Aoki, Y., Kato, M., Hoshino, K., Minami, A., and Fujita, T., Jpn. J. Appl. Phys. 26, L 774 (1987).CrossRefGoogle Scholar
17Dimos, D., Chaudari, P., Mannhart, J., and Legoues, F.K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
18Verebelyi, D.T., Christen, D.K., Feenstra, R., Cantoni, C., Lee, D.F., Paranthaman, M., Arendt, P.N., DePaula, R.F., Groves, J.R., and Prouteau, C., Appl. Phys. Lett. 76, 1755 (2000).Google Scholar
19Koren, G., Gupta, A., Baseman, R.J., Lutwyche, M.I., and Laibowitz, R.B., Appl. Phys. Lett. 55, 2450 (1989).CrossRefGoogle Scholar
20Norton, D.P., Lowndes, D.H., Budai, J.D., Christen, D.K., Jones, E.C., Lay, K.W., and Tkaczyk, J.E., Appl. Phys. Lett. 57, 1164 (1990).CrossRefGoogle Scholar
21Mallika, C. and Sreedharan, O.M., J. Alloys Compd. 191, 219 (1993).CrossRefGoogle Scholar
22Sreedharan, O.M. and Chandrasekharaiah, M.S., J. Mater. Sci. 21, 2581 (1986).CrossRefGoogle Scholar