Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T12:15:20.606Z Has data issue: false hasContentIssue false

Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films

Published online by Cambridge University Press:  31 January 2011

J. G. Wen
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
Z. P. Huang
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
D. Z. Wang
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
J. H. Chen
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
S. X. Yang
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
Z. F. Ren*
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
J. H. Wang
Affiliation:
Department of Chemistry, State University of New York, Buffalo, New York 14260
L. E. Calvet
Affiliation:
Departments of Applied Physics, Electrical Engineering and Physics, Yale University, New Haven, Connecticut 06520–8284
J. Chen
Affiliation:
Departments of Applied Physics, Electrical Engineering and Physics, Yale University, New Haven, Connecticut 06520–8284
J. F. Klemic
Affiliation:
Departments of Applied Physics, Electrical Engineering and Physics, Yale University, New Haven, Connecticut 06520–8284
M. A. Reed
Affiliation:
Departments of Applied Physics, Electrical Engineering and Physics, Yale University, New Haven, Connecticut 06520–8284
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Microstructures of well-aligned multiwall carbon nanotubes grown on patterned nickel nanodots and uniform thin films by plasma-enhanced chemical vapor deposition have been studied by electron microscopy. It was found that growth of carbon nanotubes on patterned nickel nanodots and uniform thin films is different. During growth of carbon nanotubes, a nickel particle sits at the tip of each nanotube, and its [220] is preferentially oriented along the plasma direction, which can be explained by a channeling effect of ions coming into nickel particles in plasma. The alignment of nanotubes is induced by the electrical field direction relative to substrate surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rinzler, A.G., Hafner, J.H., Nikolaev, P., Lou, L., Kim, S.G., Tomanek, D., Nordlander, P., Colbert, D.T., and Smalley, R.E., Science 269, 1550 (1995).Google Scholar
2.de Heer, W.A., Chatelain, A., and Ugarte, D.A., Science 270, 1179 (1995).Google Scholar
3.Saito, Y., Hamaguchi, K., Hata, K., Uchida, K., Tasaka, Y., Ikazaki, F., Yumura, M., Kasuya, A., and Nishina, Y., Nature 389, 554 (1997).CrossRefGoogle Scholar
4.Schmid, H. and Fink, H.W., Appl. Phys. Lett. 70, 2679 (1997).CrossRefGoogle Scholar
5.Collins, P.G. and Zettl, A., Appl. Phys. Lett. 69, 1969 (1996).CrossRefGoogle Scholar
6.Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., and Provencio, P.N., Science 282, 1105 (1998).Google Scholar
7.Huang, Z.P., Wu, J.W., Ren, Z.F., Wang, J.H., Siegal, M.P., and Provencio, P.N., Appl. Phys. Lett. 73, 3845 (1998).Google Scholar
8.Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, D.Z., and Wang, J.H., in Electronic Properties of Novel Materials—Science and Technology of Molecular Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., AIP Conference Proceedings, 486, Tirol, Austria (Springer Verlag, The Netherlands, 1998), pp. 263–67.Google Scholar
9.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
10.Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., and Dai, H.J., Science 283, 512 (1999).CrossRefGoogle Scholar
11.Li, J., Papadopoulos, C., Xu, J.M., and Moskovits, M., Appl. Phys. Lett. 75, 367 (1999).CrossRefGoogle Scholar
12.Suh, J.S. and Lee, J.S., Appl. Phys. Lett. 75, 2047 (1999).Google Scholar
13.Nillson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J-M., and Kern, K., Appl. Phys. Lett. 76, 2071 (2000).CrossRefGoogle Scholar
14.Kuang, M.H., Wang, Z.L., Bai, X.D., Guo, J.D., and Wang, E.G., Appl. Phys. Lett. 76, 1255 (2000).CrossRefGoogle Scholar
15.Bower, C., Zhu, W., Jin, S., and Zhou, O., Appl. Phys. Lett. 77, 830 (2000).CrossRefGoogle Scholar
16.Ren, Z.F., Huang, Z.P., Wang, D.Z., Wen, J.G., Xu, J.W., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F., and Reed, M.A., Appl. Phys. Lett. 75, 1086 (1999).CrossRefGoogle Scholar
17.Wen, J.G., in Characterization of High-Tc Materials and Devices by Electron Microscopy, edited by Browning, N.D. and Pennycook, S.J., (Cambridge Univ. Press, Cambridge, United Kingdom, 2000), pp. 69101.CrossRefGoogle Scholar
18.Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., and Hayashi, T., Chem. Phys. Lett. 204, 277 (1993).CrossRefGoogle Scholar
19.Carter, G. and Colligon, J.S., in Ion Bombardment of Solids, (Heinemann Educational Books, London, United Kingdom, 1968).Google Scholar
20.Iijima, Y., Hosaka, M., Tanabe, N., Sadakata, N., Saitoh, T., Kohno, O., and Takeda, K., Appl. Superconductivity 4, 475 (1996).CrossRefGoogle Scholar
21.Poncharal, P., Wang, Z.L., Ugarte, Z., and de Heer, W.A., Science 283, 1513 (1999).CrossRefGoogle Scholar
22.Bower, C., Zhou, O., Zhu, W., Werder, D.J., and Jin, S., Appl. Phys. Lett. 77, 2767 (2000).CrossRefGoogle Scholar