Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T03:36:16.573Z Has data issue: false hasContentIssue false

Formation of Single-crystal CoSi2 Buffer Layers on Si(100) Substrates by High Dose Co Ion Implantation for the Deposition of YBa2Cu3O7−x Thin Films

Published online by Cambridge University Press:  31 January 2011

Yijie Li*
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, D-07743 Jena, Germany
P. Seidel
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, D-07743 Jena, Germany
F. Machalett
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, D-07743 Jena, Germany
S. Linzen
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, D-07743 Jena, Germany
F. Schmidl
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, D-07743 Jena, Germany
*
a)Corresponding author, e-mail: [email protected] Present address: Superconductivity Research Laboratory, ISTEC, 1-10-13, Koto-ku, Tokyo 135, Japan.
Get access

Abstract

High quality single-crystal CoSi2 layers have been successfully formed on Si(100) using low energy high dose Co ion implantation followed by subsequent annealing method as a buffer layer for the deposition of YBa2Cu3O7−x (YBCO) thin films. Rutherford backscattering spectrometry with channeling (RBS-C) measurements showed that CoSi2 layers after annealing at temperatures between 850 and 950 °C had a minimum yield Xmin of about 3%. X-ray diffraction (XRD) spectra revealed that CoSi2 layers had the same orientation as the Si(100) substrates. Phi scan XRD spectra proved that CoSi2 layers epitaxially grew in the cube-on-cube epitaxial growth mode with respect to the Si(100) substrates. YBCO films and CeO2/YSZ buffer layers were deposited on CoSi2/Si(100) substrates via laser ablation and electron beam evaporation, respectively. θ-2θ, ω, and φ scan XRD spectra illustrated that YBCO films and CeO2/YSZ buffer layers had the epitaxial structure both in a-b plane and along the c-axis. YBCO films grown on this multilayered structure demonstrated excellent superconducting properties with the zero resistance transition temperature Tc0 of 87–90 K. The transition width (ΔTc) was about 1 K. Orientation and epitaxial crystalline quality of YBCO films and CeO2/YSZ buffer layers were confirmed by XRD and RBS-C characterization. All films consisted of c-axis oriented grains. RBS-C spectra indicated a high degree of crystalline perfection with a channeling minimum yield for Ba as low as 8%, and interdiffusion between the YBCO film and buffer layers or between the YBCO film and the substrate was limited. This multilayer system shows the possibility for the application of YBa2Cu3O7−x thin films on technical Si substrates in the field of hybrid superconductor-semiconductor technology.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connell, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57, 1111 (1990).Google Scholar
2.Witanachchi, S., Patel, S., Kwok, H. S., and Shaw, D. T., Appl. Phys. Lett. 54, 578 (1989).CrossRefGoogle Scholar
3.Lubig, A., Buchal, Ch., Zander, W., and Stritzker, B., in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Narayan, J., Chu, C. W., Schneemeyer, L. F., and Christen, D. K. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1989), p. 1149.Google Scholar
4.Luo, Li, Wu, X. D., Dye, R.C., Muenchausen, R. E., Foltyn, S. R., Coulter, Y., Maggiore, C. J., and Inoue, T., Appl. Phys. Lett. 59, 2043 (1991).CrossRefGoogle Scholar
5.Haakenaasen, R., Fork, D. K., and Golovchenko, J. A., Appl. Phys. Lett. 64, 1573 (1994).CrossRefGoogle Scholar
6.Linzen, S., Schmidl, F., Schmauder, T., Schneidewind, H., Seidel, P., and Köhler, T., in Superconductivity and Superconducting Materials Technologies, edited by Vincenzini, P. (Techna Srl, Faenza, Italy, 1995), p. 273.Google Scholar
7.Prusseit, W., Corsepius, S., Zwerger, M., Berberich, P., Kinder, H., Eible, O., Jackel, C., Breuer, U., and Kurz, H., Physica C 201, 249 (1992).CrossRefGoogle Scholar
8.Jia, Q. X. and Anderson, W. A., Appl. Phys. Lett. 57, 304 (1990).CrossRefGoogle Scholar
9.Kellet, B. J., James, J. H., Gauzzc, A., Dwir, B., Pavuna, D., and Reinhart, F. K., Appl. Phys. Lett. 57, 1146 (1990).Google Scholar
10.Kumar, Ashok and Narayan, J., Appl. Phys. Lett. 59, 1785 (1991).CrossRefGoogle Scholar
11. Li Luo, Muenchausen, R. E., Maggiore, C. J., Jimenz, J. R., and Schowalter, L. J., Appl. Phys. Lett. 58, 419 (1991).Google Scholar
12.Tung, R. T. and Gibson, J. M., J. Vac. Sci. Technol. A3, 987 (1985).Google Scholar
13.Ottaviani, G., J. Vac. Sci. Technol. 16, 1112 (1979).CrossRefGoogle Scholar
14.Tung, R. T., Bean, J. C., Gibson, J. M., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 40, 684 (1982).CrossRefGoogle Scholar
15.Muraka, S. P., Solid State Technol. 28, 181 (1985).Google Scholar
16.Rosencher, E., d'Avitaya, F. Arnaud, Badoz, P. A., d'Anterroches, C., Glastre, G., Vincent, G., and Pfister, J. C., in Heteroepitaxy on Silicon II, edited by Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 91, Pittsburgh, PA, 1987), p. 415.Google Scholar
17.White, Alice E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett. 50, 95 (1987).Google Scholar
18.Bean, J. C. and Poate, J. M., Appl. Phys. Lett. 37, 643 (1980).Google Scholar
19.Bulle-Lieuwma, C. W. T., van Ommen, A. H., and Hornstra, J., in Epitaxy of Semiconductor Layered Structures, edited by Tung, R. T., Dawson, L. R., and Gunshor, R. L. (Mater. Res. Soc. Symp. Proc. 102, Pittsburgh, PA, 1988), p. 377.Google Scholar
20.White, Alice E., Short, K. R., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett. 50, 95 (1987).CrossRefGoogle Scholar
21.Witzmann, A., Schippel, S., and Zentgraf, A., Nucl. Instrum. Methods B68, 430 (1992).CrossRefGoogle Scholar
22.Sigmund, P., Phys. Rev. 184, 383 (1969).Google Scholar
23.Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, Oxford, 1985), Vol. 1.Google Scholar
24.Witzmann, A., Rubsody—an interactive program for RBS simulation, Friedrich-Schiller-Universität Jena, 1987–1992, distributed by ORTEC Ltd.Google Scholar
25.Borck, J., Linzen, S., Zach, K., and Seidel, P., Physica C 213, 145 (1993).Google Scholar
26.Hull, R., White, A. E., Short, K. T., and Bonar, J. M., J. Appl. Phys. 68, 1629 (1990).Google Scholar
27.van Ommen, A. H., Ottenheim, J. J. M., Theunissen, A. M. L., and Mouwen, A. G., Appl. Phys. Lett. 53, 669 (1988).CrossRefGoogle Scholar
28.Li, Yijie, Linzen, S., Seidel, P., Machalett, F., and Schmidl, F., J. Crys. Growth 162, 147 (1996).Google Scholar
29.Li, Yijie, Linzen, S., Seidel, P., Machalett, F., Schmidl, F., Schneidewind, H., Schmauder, T., Cihar, R., and Schaller, S., in Proc. 2nd European Conference on Applied Superconductivity, edited by D., Dew–Hughes, 3–6 July 1995, Edinburgh, Scotland, Inst. Phys. Conf. Ser. 148, 91 (1995) (IOP Publ., Bristol, UK, 1995).Google Scholar