Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T20:59:06.689Z Has data issue: false hasContentIssue false

Formation and characteristics of highly c-axis-oriented Bi3.25La0.75Ti3O12 thin films on SiO2/Si(100) and Pt/Ti/SiO2/Si(100) substrates

Published online by Cambridge University Press:  31 January 2011

Uong Chon*
Affiliation:
Department of Materials Science and Engineering, and National Research Laboratory (NRL) for Ferroelectric Phase Transitions, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Republic of Korea
Hyun M. Jang
Affiliation:
Department of Materials Science and Engineering, and National Research Laboratory (NRL) for Ferroelectric Phase Transitions, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Republic of Korea
Sun-Hwa Lee
Affiliation:
Department of Materials Science and Engineering, and National Research Laboratory (NRL) for Ferroelectric Phase Transitions, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Republic of Korea
Gyu-Chul Yi
Affiliation:
Department of Materials Science and Engineering, and National Research Laboratory (NRL) for Ferroelectric Phase Transitions, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Republic of Korea
*
a) Address all correspondence to this author. e-mail: [email protected] Also affiliated with Research Institute of Industrial Science and Technology (RIST), P.O. Box 135, Pohang 790-330, Republic of Korea
Get access

Abstract

Highly c-axis-oriented Bi3.25La0.75Ti3O12 (BLT) films with a homogeneous in-plane orientation were successfully grown on SiO2/Si(100) and Pt/Ti/SiO2/Si(100) substrates by a sol-coating route. The substitution of lanthanum ions for bismuth ions in the layered perovskite suppressed the formation of pyrochlore phase and enhanced the c-axis-oriented growth. The c-axis-oriented BLT film fabricated on a Pt/Ti/SiO2/Si(100) substrate showed fatigue-free characteristics with a large remanent polarization of 26–28 μC/cm2 and the coercive field of 50–75 kV/cm. These features significantly enhance the potential value of the BLT film for the applications to high-density ferroelectric random-access memories devices. In addition, the c-axis-oriented BLT film, with a homogeneous in-plane orientation on an amorphous surface, can be used as a suitable template material for applications to various electro-magneto-optic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Park., B.H., Kang., B.S., Bu., S.D., Noh., T.W., Lee, J., and Jo, W., Nature 401, 682 (1999).Google Scholar
2.Kingon, A., Nature 401, 658 (1999).Google Scholar
3.Cummins., S.E. and Cross., L.E., J. Appl. Phys. 39, 2268 (1968).CrossRefGoogle Scholar
4.Subbarao., E.C., Phys. Rev. 122, 804 (1961).CrossRefGoogle Scholar
5.Chon, U., Yi., G.C., and Jang., H.M., Appl. Phys. Lett. 78, 658 (2001).CrossRefGoogle Scholar
6.Shannon., R.D. and Prewitt, C.T., Acta Crystallogr. B25, 925 (1969).Google Scholar
7.Dorrian, J.F., Newnham, R.E., and Smith, D.K., Ferroelectrics 3, 17 (1971).CrossRefGoogle Scholar
7.Sedlar, M. and Sayer, M., Ceram. Int. 22, 241 (1996).CrossRefGoogle Scholar
8.Hwang, K.S., Mater. Chem. Phys. 56, 222 (1998).Google Scholar
9.Wu, W., Fumoto, K., Oishi, Y., Okuyama, M., and Hamakawa, Y., Jpn. J. Appl. Phys. 34, 5141 (1995).CrossRefGoogle Scholar
10.Krupanidhi, S.B., Roy, D., Maffei, N., and Peng, C.J., Integ. Ferro-electrics 1, 253 (1992).CrossRefGoogle Scholar
12.Glang, R., in Handbook of Thin Film Technology, edited by Maissel, L.I. and Glang, R. (McGraw-Hill, New York, 1970), Part 1, Chap. 1.Google Scholar
13.Lotgering, F.K., Inorg, J.. Nucl. Chem. 9, 113 (1959).Google Scholar
14.Boulton, J.M., Teowee, G., Bommersbach, W.M., and Uhlman, D.R., in Ferroelectric Thin Films II, edited by Kingor, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pitts-burgh, PA, 1992), p. 303.Google Scholar
15.Lu, Y., Hoelzer, D.T., Schulze, W.A., Tuttle, B., and Potter, B.G., Mater. Sci. Eng. B39, 41 (1996).Google Scholar
16.Jo, W. and Noh, T.W., Appl. Phys. Lett. 65, 2780 (1994).Google Scholar
17.Maffei, N. and Krupanidhi, S.B., J. Appl. Phys. 72, 3617 (1992).CrossRefGoogle Scholar
18.Buhay, H., Sinharoy, S., Kasner, W.H., Francombe, M.H., Lampe, D.R., and Stepke, E., Appl. Phys. Lett. 58, 1470 (1991).Google Scholar
19.Yoshimura, K., Ishinabe, M., Okamura, S., and Tsukamoto, T., Jpn. J. Appl. Phys. 34, 2425 (1995).CrossRefGoogle Scholar
20.Yamaguchi, M., Nagatomo, T., and Omoto, O., Jpn. J. Appl. Phys. 35, 4984 (1996).CrossRefGoogle Scholar
21.Kato, E., Watanabe, Y., Tsukamoto, T., and Tsuchiya, T., J. Ceram. Soc. Jpn. 104, 1015 (1996).Google Scholar
22.Dat, R., Lee, J.K., Auciello, O., and Kingon, A.I., Appl. Phys. Lett. 67, 572 (1995).Google Scholar
23.Li, T., Zhu, Y., Desu, S.B., Peng, C-H., and Nagata, M., Appl. Phys. Lett. 68, 616 (1996).CrossRefGoogle Scholar
24.Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).Google Scholar
25.Trajanovic, Z., Kwon, C., Robson, M.C., Kim, K.C., Rajeswari, M., Ramesh, R., Venkatesan, T., Lofland, W.E., Bhagat, S.M., and Fork, D., Appl. Phys. Lett. 69, 1005 (1996).CrossRefGoogle Scholar
26.Kalkur, T.S., Kulkarni, J., Lu, Y.C., Rowe, M., Han, W., and Kamerdiner, L., Ferroelectrics 116, 135 (1991).CrossRefGoogle Scholar
27.Ueda, T., Noma, A., and Ueda, D., Integ. Ferroelectrics 7, 45 (1995).Google Scholar
28.Gu, J.Y., Kwon, C., Robson, M.C., Trajanovic, Z., Fhosh, K., Sharma, R.P., Shreekala, R., Rajeswari, M., Venkatesan, T., Ramesh, R., and Noh, T.W., Appl. Phys. Lett. 70, 1763 (1997).CrossRefGoogle Scholar