Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T12:47:27.365Z Has data issue: false hasContentIssue false

Fast mechanochemical synthesis of carbon nanotube-polyaniline hybrid materials

Published online by Cambridge University Press:  25 May 2018

Juan C. García-Gallegos
Affiliation:
Bioingeniería, Facultad de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez S/N CP 21280, Mexicali, BC 21280, México
Yadira I. Vega-Cantú
Affiliation:
Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, México; and Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, 50740-570, Brasil
Fernando J. Rodríguez-Macías*
Affiliation:
Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, México; and Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, 50740-570, Brasil
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

We present a fast method to prepare hybrid materials of polyaniline (PAni) with carbon nanotubes (CNTs, both undoped and nitrogen-doped) by ball milling without solvents or strong oxidants. PAni forms nanoparticles, attached to CNTs in a nanocomposite structure, with the nanotubes well dispersed among the polymer. This is achieved with only a few minutes of ball milling. Raman spectroscopy confirms that PAni was synthesized in its conductive state and suggests a good CNT–PAni interaction, particularly with nitrogen-doped CNTs. We found that water increased polymer yield, which we optimized, together with the nanocomposite conductivity, as function of amount of water and of oxidant (FeCl3). The nanocomposite conductivity is four orders of magnitude higher than that of PAni, for both types of nanotubes. Scanning electron microscopy and X-ray diffraction both show negligible damage to the CNT during this mechanosynthesis procedure, while dry milling and milling CNT in water without aniline does damage nanotubes, indicating that the reaction absorbs most of the mechanical energy.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sarah Morgan

References

REFERENCES

De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., and Hart, A.J.: Carbon nanotubes: Present and future commercial applications. Science 339, 535539 (2013).CrossRefGoogle ScholarPubMed
Schaefer, D.W. and Justice, R.S.: How nano are nanocomposites? Macromolecular 40, 8501 (2007).CrossRefGoogle Scholar
Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C.: Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357 (2010).CrossRefGoogle Scholar
Salaneck, W.R., Lundstrom, I., Huang, W-S., and MacDiarmid, A.: A two-dimensional-surface ‘state diagram’ for polyaniline. Synth. Met. 13, 291 (1986).Google Scholar
Zarras, P. and Irvin, J.: Electrically active polymers. In Encyclopedia of Polymer Science and Technology, Concise, Mark, H.F., ed. (John Wiley & Sons Inc., Hoboken, New Jersey, 2007); p. 351.Google Scholar
Maser, W.K., Benito, A.M., Callejas, M.A., Seeger, T., Martínez, M.T., Schreiber, J., Muszinsky, J., Chauvet, O., Osváth, Z., Kóos, A.A., and Biró, L.P.: Synthesis and characterization of new polyaniline/nanotube composites. Mater. Sci. Eng. C 23, 87 (2003).CrossRefGoogle Scholar
Wu, T-M., Lin, Y-W., and Liao, C-S.: Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 43, 734 (2005).CrossRefGoogle Scholar
Mottaghitalab, V., Spinks, G.F., and Wallace, G.G.: The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synth. Met. 152, 77 (2005).CrossRefGoogle Scholar
Wang, C.Y., Mottaghitalab, V., Too, C.O., Spinks, G.M., and Wallace, G.G.: Polyaniline and polyaniline–carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. J. Power Sources 163, 1105 (2007).CrossRefGoogle Scholar
Sivakkumar, S.R., Kim, W.J., Choi, J-A., MacFarlane, D.R., Forsyth, M., and Kim, D-W.: Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J. Power Sources 171, 1062 (2007).CrossRefGoogle Scholar
Zhang, J., Kong, L-B., Wang, B., Luo, Y-C., and Kang, L.: In situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth. Met. 159, 260 (2009).Google Scholar
Mottaghitalab, V., Spinks, G.F., and Wallace, G.G.: Polyaniline fibres containing single walled carbon nanotubes: Enhanced performance artificial muscles. Synth. Met. 156, 796 (2006).CrossRefGoogle Scholar
Huang, J. and Kaner, R.B.: A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126, 851 (2004).Google Scholar
Meng, L., Lu, Y., Wang, X., Zhang, J., Duan, Y., and Li, C.: Facile synthesis of straight polyaniline nanostick in hydrogel. Macromolecules 40, 2981 (2007).Google Scholar
Stejskal, J., Sapurina, I., Trchová, M., and Konyushenko, E.N.: Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41, 3530 (2008).CrossRefGoogle Scholar
Nasir Baig, R.B. and Varma, R.S.: Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev. 41, 1559 (2012).Google Scholar
Suemori, K., Watanabe, Y., and Hoshino, S.: Carbon nanotube bundles/polystyrene composites as high-performance flexible thermoelectric materials. Appl. Phys. Lett. 106, 113902 (2015).CrossRefGoogle Scholar
Enqvist, E., Ramanenka, D., Marques, P.A.A.P., Gracio, J., and Emami, N.: The effect of ball milling time and rotational speed on ultra high molecular weight polyethylene reinforced with multiwalled carbon nanotubes. Polym. Compos. 37, 1128 (2016).CrossRefGoogle Scholar
Zhai, T., Li, D., Fei, G., and Xia, H.: Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam. Composites, Part A 72, 108 (2015).CrossRefGoogle Scholar
Liu, F., Wang, Y., Li, K., Jiang, L., Wang, X., Shao, X., Zhang, B., and Cui, F.: Graphene oxide/ultrahigh molecular weight polyethylene composites: Ball-milling preparation mechanical performance and biocompatibility effects. Am. J. Biomed. Sci. Eng. 1, 51 (2015).Google Scholar
Ambrosio-Martín, J., Gorrasi, G., Lopez-Rubio, A., Fabra, M.J., Mas, L.C., López-Manchado, M.A., and Lagaron, J.M.: On the use of ball milling to develop PHBV–graphene nanocomposites (I)—Morphology, thermal properties, and thermal stability. J. Appl. Polym. Sci. 132, 42101 (2015).Google Scholar
Delogu, F., Gorrasi, G., and Sorrentino, A.: Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives. Prog. Mater. Sci. 86, 75 (2017).CrossRefGoogle Scholar
Huang, J., Moore, J.A., Acquaye, J.H., and Kaner, R.B.: Mechanochemical route to the conducting polymer polyaniline. Macromolecules 38, 317 (2005).Google Scholar
Abdiryim, T., Xiao-Gang, Z., and Jamal, R.: Synthesis and characterization of poly(o-toluidine) doped with organic sulfonic acid by solid-state polymerization. J. Appl. Polym. Sci. 96, 1630 (2005).CrossRefGoogle Scholar
Jamal, R., Abdiryim, T., Ding, Y., and Nurulla, I.: Comparative studies of solid-state synthesized poly(o-methoxyaniline) doped with organic sulfonic acids. J. Polym. Res. 15, 75 (2008).Google Scholar
Abdiryim, T., Jamal, R., and Nurulla, I.: Doping effect of organic sulphonic acids on the solid-state synthesized polyaniline. J. Appl. Polym. Sci. 105, 576 (2007).CrossRefGoogle Scholar
Du, X-S., Zhou, C-F., Wang, G-T., and Mai, Y-M.: Novel solid-state and template-free synthesis of branched polyaniline nanofibers. Chem. Mater. 20, 3806 (2008).CrossRefGoogle Scholar
Ubul, A., Jamal, R., Rahman, A., Awut, T., Nurulla, I., and Abdiryim, T.: Solid-state synthesis and characterization of polyaniline/multi-walled carbon nanotubes composite. Synth. Met. 161, 2097 (2011).Google Scholar
Cochet, M., Maser, W.K., Benito, A.M., Callejas, M.A., Martinez, M.T., Benoit, J-M., Schreiber, J., and Chauvet, O.: Synthesis of a new polyaniline/nanotube composite: “In situ” polymerisation and charge transfer through site-selective interaction. Chem. Commun. 16, 1450 (2001).Google Scholar
Yan, X-b., Han, Z-J., Yang, Y., and Tay, B-K.: Fabrication of carbon nanotube–polyaniline composites via electrostatic adsorption in aqueous colloids. J. Phys. Chem. C 111, 4125 (2007).CrossRefGoogle Scholar
Montgomery, D.C.: Design and Analysis of Experiments, 5th ed. (John Wiley & Sons, New York, NY, 2004), p. 459.Google Scholar
Fragneaud, B., Masenelli-Varlot, K., Gonzalez-Montiel, A., Terrones, M., and Cavaillé, J-Y.: Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization. Chem. Phys. Lett. 419, 567 (2006).CrossRefGoogle Scholar
Kamalakaran, R., Terrones, M., Seeger, T., Kohler-Redlich, P., Rühle, M., Kim, Y.A., Hayashi, T., and Endo, M.: Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Appl. Phys. Lett. 77, 3385 (2000).CrossRefGoogle Scholar
Terrones, M., Kamalakaran, R., Seeger, T., and Rühle, M.: Novel nanoscale gas containers: Encapsulation of N2 in CNx nanotubes. Chem. Commun., 2335 (2000).CrossRefGoogle Scholar
Espinosa-González, C.G., Rodríguez-Macías, F.J., Cano-Márquez, A.G., Kaur, J., Shofner, M.L., and Vega-Cantú, Y.I.: Polystyrene composites with very high carbon nanotubes loadings by in situ grafting polymerization. J. Mater. Res. 28, 1087 (2013).CrossRefGoogle Scholar
O’Neil, M.J., ed.: The Merck Index, 13th ed. (Merck & Co., Inc., Whitehouse Station, NJ, 2001); p. 712.Google Scholar
Sohma, J.: Mechanochemistry of polymers. Prog. Polym. Sci. 14, 451 (1989).Google Scholar
Caruso, M.M., Davis, D.A., Shen, Q., Odom, S.A., Sottos, N.R., White, S.R., and Moore, J.S.: Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 109, 5755 (2009).CrossRefGoogle ScholarPubMed
Ewels, C.P. and Glerup, M.: Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1345 (2005).Google Scholar
Ayala, P., Arenal, R., Rümmeli, M., Rubio, A., and Pichler, T.: The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48, 575 (2010).Google Scholar
Czerw, R., Terrones, M., Charlier, J-C., Blase, X., Foley, B., Kamalakaran, R., Grobert, N., Terrones, H., Tekleab, D., Ajayan, P.M., Blau, W., Rühle, M., and Carroll, D.L.: Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 1, 457 (2001).CrossRefGoogle Scholar
García-Gallegos, J.C., Martín-Gullón, I., Conesa, J., Vega-Cantú, Y.I., and Rodríguez-Macías, F.J.: Effect of carbon nanofillers on the performance of electromechanical polyaniline based composite actuators. Nanotechnology 27, 015501 (2016).Google Scholar
Dallas, P., Stamopoulos, D., Boukos, N., Tzitzios, V., Niarchos, D., and Petridis, D.: Characterization, magnetic and transport properties of polyaniline synthesized through interfacial polymerization. Polymer 48, 3162 (2007).CrossRefGoogle Scholar
Li, Y.B., Wei, B.Q., Liang, J., Yu, Q., and Wu, D.H.: Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 37, 493 (1999).CrossRefGoogle Scholar
Hilding, J., Grulke, E.A., Zhang, Z.G., and Lockwood, F.: Dispersion of carbon nanotubes in liquids. J. Dispersion Sci. Technol. 24, 1 (2003).CrossRefGoogle Scholar
Lu, J.F. and Tsai, C.J.: Hydrothermal phase transformation of hematite to magnetite. Nanoscale Res. Lett. 9, 230 (2014).CrossRefGoogle ScholarPubMed
Park, E., Ostrovski, O., Zhang, J., Thomson, S., and Howe, R.: Characterization of phases formed in the iron carbide process by X-ray diffraction, Mossbauer, X-ray photoelectron spectroscopy, and Raman spectroscopy analyses. Metall. Mater. Trans. B 32, 839 (2001).Google Scholar
Supplementary material: PDF

García-Gallegos et al. supplementary material

García-Gallegos et al. supplementary material

Download García-Gallegos et al. supplementary material(PDF)
PDF 593.4 KB