Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T19:58:05.272Z Has data issue: false hasContentIssue false

Facile method of infilling photonic silica templates with rare earth element oxide phosphor precursors

Published online by Cambridge University Press:  03 March 2011

J. Silver*
Affiliation:
Centre for Phosphors and Display Materials, Chemical and Life Sciences, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom
T.G. Ireland
Affiliation:
Centre for Phosphors and Display Materials, Chemical and Life Sciences, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom
R. Withnall
Affiliation:
Centre for Phosphors and Display Materials, Chemical and Life Sciences, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom
*
a)Address all correspondence to these authors.e-mail: [email protected]
Get access

Abstract

A method for preparing rare-earth element-doped yttrium oxide phosphor photonic band gap crystals (PBG) is described, which obviates the necessity for multiple infilling of the opal-like template. The method utilizes (i) the re-dissolving and the concentration of previously precipitated spherical phosphor particles made by homogeneous precipitation methods into a viscous precursor phosphor solution, and (ii) formation of an opal-like template of polystyrene or silica spheres. A procedure is outlined that permits the precursor solution to be drawn into the template in a controlled manner that can be easily monitored using an optical microscope. Attenuation of the strong, red cathodoluminescent emission is observed in Y2O3:Eu3+ phosphor PBG crystals that are engineered to have a stopband overlapping the emission bands in the red region. This attenuation results from Bragg diffraction of the light emitted within the PBG phosphor crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58 2059 (1987).CrossRefGoogle ScholarPubMed
2John, S.: John Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58 2486 (1987).CrossRefGoogle Scholar
3Joannopopoulos, J.D., Meade, R.D., and Winn, J.N., Photonic Crystals (Princeton University Press, Princeton, NJ, 1995).Google Scholar
4van Blaaderen, A., Ruel, R. and Wiltius, P.: Template-directed colloidal crystallization. Nature 385 321 (1997).CrossRefGoogle Scholar
5Wiersma, D., Bartolini, P., Lagendijk, A. and Righini, R.: Localization of light in a disordered medium. Nature 390 671 (1997).CrossRefGoogle Scholar
6Martinez, M.I.,Ireland, T., Fern, G.R., Silver, J., and Withnall, R.: “Luminescent properties of rare-earth doped photonic crystals,” in Technical Digest of Quantum Electronics and Photonics 15 Conference, Glasgow, 3rd-6th September, 2001, p. 17.Google Scholar
7Withnall, R., Ireland, T.G., Martinez-Rubio, M.I., Fern, G.R. and Silver, J.: Rare earth element anti-Stokes emission from three inverse photonic lattices. J. Mod. Opt. 49 965 (2002).CrossRefGoogle Scholar
8Silver, J., Withnall, R., Martinez-Rubio, M.I., Ireland, T.G. and Fern, G.R.: Photonic crystals for display applications. SID Tech. Digest 33 16 (2002).CrossRefGoogle Scholar
9Silver, J., Withnall, R., Martinez-Rubio, M.I., Ireland, T.G. and Fern, G.R.: The first cathodoluminescence spectra from photonic band gap phosphors for low voltage applications. SID Tech. Digest 34 414 (2003).CrossRefGoogle Scholar
10Withnall, R., Martinez-Rubio, M.I., Fern, G.R., Ireland, T.G. and Silver, J.: Photonic phosphors based on cubic Y2O3:Tb3+ infilled into a synthetic opal lattice. J. Opt. A: Pure Appl. Opt. 5 S81 (2003).CrossRefGoogle Scholar
11John, S. and Quang, T.: Collective switching and inversion without fluctuation of two-level atoms in confined photonic system. Phys. Rev. Lett. 78 1888 (1997).CrossRefGoogle Scholar
12Silver, J. and Withnall, R. Patent on “Photonic Phosphors and Devices,” Patent No. PCT/GB2003/001486 (2003).Google Scholar
13Davis, K.E., Russel, W.B. and Glantschnig, W.J.Disorder-to-order transition in settling suspensions of colloidal silica-x-ray measurements. Science 245 (1989).CrossRefGoogle ScholarPubMed
14Denkov, N.D., Velev, O.D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, H. and Nagayama, K.: Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8 3183 (1992).CrossRefGoogle Scholar
15Velev, O.D., Denkov, N.D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, H. and Nagayama, K.: Mechanism of formation of two-dimensional crystal from latex particles on substrata. Prog. Coll. Polym. Sci. 93, (1993).CrossRefGoogle Scholar
16Denkov, N.D., Velev, O.D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, H. and Nagayama, K.: Two dimensional crystallization. Nature 361 26 (1993).CrossRefGoogle Scholar
17Velev, O.D., Jede, T.A., Lobo, R.F. and Lenhoff, A.M.: Porous silica via colloidal crystallization. Nature 389 447 (1997).CrossRefGoogle Scholar
18Gaponenko, S.V., Kapitonov, A.M., Bogomolov, V.N., Prokofiev, A.V., Eymuller, E. and Rogach, A.L.: Electrons and photons in mesoscopic structures: quantum dots in a phototonic world. JEPT. Lett. 68 142 (1988).Google Scholar
19Velev, O.D. and Lenhoff, A.M.: Colloid crystals as templates for porous materials. Curr. Opin. Coll. Interf. Sci. 5 56 (2000).CrossRefGoogle Scholar
20Meseguer, F., Blanco, A., Miguez, H., Garcia-Santamaria, F., Ibisate, M. and Lopez, C.: Synthesis of inverse opals. Coll. Surf. A. 202 281 (2002).CrossRefGoogle Scholar
21Stein, A.: Sphere templating methods for periodic porous solids. Micropor. Mesopor. Mater. 44 227 (2001).CrossRefGoogle Scholar
22Konderink, A.F., Johnson, P.M., Galisteo-Lopez, J.F. and Vos, W.L.: Three dimensional photonic crystals as a cage for light. C.R. Phys. 3 67 (2002).CrossRefGoogle Scholar
23Velev, O.D. and Kaler, E.: Structured porous materials via colloidal crystal templating: From inorganic oxides to metals. Adv. Mater. 12 531 (2000).3.0.CO;2-S>CrossRefGoogle Scholar
24Park, S.H. and Xia, Y.: Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv. Mater. 10 1045 (1998).3.0.CO;2-2>CrossRefGoogle Scholar
25Miguez, H., Meseguer, F., Lopez, C., Holgado, M., Andreasen, G., Mifsud, A. and Fornes, V.: Germanium FCC structures from a colloidal crystal template. Langmuir 16 4405 (2000).CrossRefGoogle Scholar
26Holland, B.T., Blanford, C.F. and Stein, A.: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal void. Science 281 538 (1998).CrossRefGoogle Scholar
27Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C., Miguez, F. Meseguer H., Mondia, J.P., Ozin, C.A., Toader, O. and van Driel, H.M.: Large scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap. Nature 405 437 (2000).CrossRefGoogle ScholarPubMed
28Wijnhoven, J.E.G.J. and Vos, W.L.: Preparation of photonic crystals made of air spheres in titania. Science 281 802 (1998).CrossRefGoogle ScholarPubMed
29Braun, P.V. and Wiltius, P.: Macroporous materials-electrochemically grown photonic crystals. Current Opinion Coll. Interf. Sci. 7 116 (2002).CrossRefGoogle Scholar
30Shionoya, S. and Yen, W.M.: Phosphor Handbook (CRC Press, 2000).Google Scholar
31Wickersheim, K.A. and Lever, R.A.: Luminescent behavior of the rare earths in yttrium oxide and related hosts. J. Electrochem. Soc. 111 47 (1964).CrossRefGoogle Scholar
32Hong, G.Y., Geon, B.S., Yoo, Y.K. and Yoo, J.S.: Photoluminescence characteristics of Y2O3:Eu phosphors by aerosol pyrolysis. J. Electrochem. Soc. 148 H161 (2001).CrossRefGoogle Scholar
33Forest, H.: Emission colour of Y2O3:Eu Phosphor. J. Electrochem. Soc. 120 695 (1973).CrossRefGoogle Scholar
34Stober, W., Fink, A. and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Coll. Interf. Sci. 26 62 (1968).CrossRefGoogle Scholar
35Jing, X., Ireland, T.G., Gibbons, C., Barber, D.J., Silver, J., Vecht, A., Fern, G.R., Trogwa, P. and Morton, D.: Control of Y2O3:Eu spherical particle, size, assembly properties, performance for FED and HDTV. J. Electrochem. Soc. 146 4564 (1999).CrossRefGoogle Scholar
36Matijevic, E.: Colloid science of ceramic powders. Pure Appl. Chem. 60 1479 (1988).CrossRefGoogle Scholar
37Vecht, A., Gibbons, C., Davies, D., Jing, X., Marsh, P., Silver, T.G. Ireland J., Newport, A. and Barber, D.: Engineering phosphors for field emission displays. J. Vac. Sci. Tech. B 17 750 (1999).CrossRefGoogle Scholar
38Martinez-Rubio, M.I., Ireland, T.G., Fern, G.R., Snowdon, M.J. and Silver, J.: A new application for microgels: a novel method for the synthesis of spherical particles of Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acryllic acid. Langmuir 17 7145 (2001).CrossRefGoogle Scholar
39Ireland, T.G., Silver, J., Gibbons, C. and Vecht, A.: Facile self assembly of yttrium oxide europium phosphor from solution using a sacrificial micellar phase. Electrochem. Solid State Lett. 2 52 (1999).CrossRefGoogle Scholar
40Baranska, H., Labudzinska, A. and Terpinski, J. in Laser Raman Spectrometry (Ellis Horwood, Chichester, U.K., 1987), Chap. 5.Google Scholar