Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T10:02:19.387Z Has data issue: false hasContentIssue false

Fabrication of heteropolyoxometalate-based photochromic inorganic–organic nanocomposites

Published online by Cambridge University Press:  31 January 2011

Tie Rui Zhang
Affiliation:
Department of Chemistry, Jilin University, Changchun 130023, People's Republic of China
Wei Feng
Affiliation:
Department of Chemistry, Jilin University, Changchun 130023, People's Republic of China
Chun Yan Bao
Affiliation:
Department of Chemistry, Jilin University, Changchun 130023, People's Republic of China
Ran Lu
Affiliation:
Department of Chemistry, Jilin University, Changchun 130023, People's Republic of China
Xin Tong Zhang
Affiliation:
Department of Chemistry, Jilin University, Changchun 130023, People's Republic of China
Tie Ji Li
Affiliation:
Department of Chemistry, Jilin University, Changchun 130023, People's Republic of China
Ying Ying Zhao*
Affiliation:
Department of Chemistry, Jilin University, Changchun 130023, People's Republic of China
Jian Nian Yao
Affiliation:
Institute of Chemistry and Center for Molecular Science, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

A series of photochromic sol-gel films are prepared through entrapping tungsten heteropolyoxometallates (PW12O403−, SiW12O404−) and molybdenum heteropolyoxometallate (PMo12O403−) into a kind of inorganic–organic matrix cohydrolyzed from tetraethylorthosilicate and 3-aminopropyltriethoxysilane. The films show reversible photochromicity. Irradiated with ultraviolet light, the transparent films change from colorless to blue. Then, bleaching occurs when the films are in contact with air or O2 in the dark. The Keggin-type polyanions interact with R–NH3+ cations strongly, and thus disperse uniformly in the sol-gel matrix, as proved by Fourier transform infrared spectra and x-ray diffraction. The molybdenum heteropolyoxometallate sol-gel film has higher photochromic efficiency and much slower bleaching than its counterparts of tungsten heteropolyoxometallate. A charge-transfer model which is supported by electron spin resonance and related literature [T. Yamase, Chem. Rev. 98, 307, (1998)] is put forth to explain the above experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brown, G.H., Photochromism (Wiley, New York, 1971), p. 633.Google Scholar
2Yao, J.N., Kashimoto, K., and Fujishima, A., Nature 355, 624 (1992).CrossRefGoogle Scholar
3Yao, J.N., Chen, P., and Fujishima, A., J. Electroanal. Chem. 406, 223 (1996).CrossRefGoogle Scholar
4Colton, R.J., Guzman, A.M., and Rabalais, J.W., Acc. Chem. Res. 11, 170 (1978).CrossRefGoogle Scholar
5Bechinger, C., Ferrere, S., Zaban, A., Sprague, J., and Gregg, B.A., Nature 383, 608 (1996).CrossRefGoogle Scholar
6Sun, M., Xu, N., Cao, Y.W., Yao, J.N., and Wang, E.G., J. Mater. Res. 15, 927 (2000).CrossRefGoogle Scholar
7Pope, M.T., Heteropoly and Isopolyoxometalates (Springer-Verlag, Berlin, 1983), pp. 29, 101.CrossRefGoogle Scholar
8Yamase, T., Chem. Rev. 98, 307 (1998).CrossRefGoogle Scholar
9Sanchez, C. and Ribot, F., New J. Chem. 18, 1007 (1994).Google Scholar
10Lev, O., Tsionsky, M., Rabinovich, L., Giezer, V., Sampath, S., Pankratov, I., and Gun, J., Anal. Chem. 67, 22A (1995).CrossRefGoogle Scholar
11Brinker, C.J. and Scherrer, G.W., in Sol-Gel Science, Applications (Academic, San Diego, CA, 1990), p. 839.Google Scholar
12Judeinstein, P., Oliveira, P.W., Krug, H., and Schmidt, H., Chem. Phys. Lett. 220, 35 (1994).CrossRefGoogle Scholar
13Judeinstein, P. and Schmidt, H., J. Sol-Gel Sci. Tech. 3, 189 (1994).CrossRefGoogle Scholar
14Judeinstein, P., Oliveira, P.W., Krug, H., and Schmidt, H., Adv. Mater. Opt. Electron. 7, 123 (1997).3.0.CO;2-B>CrossRefGoogle Scholar
15Mo, Y.G., Dillon, R.O., Snyder, P.G., and Tiwald, T.E., Thin Solid Films 355–356, 1 (1999).CrossRefGoogle Scholar
16Buining, P.A., Humbel, B.M., Philipse, A.P., and Verkleij, A.J., Langmuir 13, 3921 (1997).CrossRefGoogle Scholar
17Chiang, C.H. and Koening, J.L., J. Colloid Interface Sci. 83, 361 (1981).CrossRefGoogle Scholar
18Vandenberg, E.T., Bertilsson, L., Liedbery, B., Uvdal, K., Erlandsson, R., Elwing, H., and Lundstrom, I., J. Colloid Interface Sci. 147, 103 (1991).CrossRefGoogle Scholar
19Rocchiccioli-Deltcheff, C., Fournier, M., Frank, R., and Thouvrnoc, R., Inorg. Chem. 22, 207 (1983).CrossRefGoogle Scholar
20Hasik, M., Pron, A., Pozniczek, J., Bielanski, A., Piwowarska, Z., Kruczala, K., and Dziembaj, R., J. Chem. Soc. Faraday Trans. 90, 2099 (1994).CrossRefGoogle Scholar
21Casan-Pastor, N., Gomez-Romero, P., Jameson, G.B., and Baker, L.C.M., J. Am. Chem. Soc. 113, 5658 (1991).CrossRefGoogle Scholar
22Wang, E.B., Xu, L., and Huang, R.D., Scientia Sinia, Ser. B, 11, 1121 (1991).Google Scholar
23Zhmud, B.V. and Sonnefeld, J., Colloid, J.Interface Sci. 195, 16 (1996).Google Scholar
24Papaconstaninou, E., Chem. Soc. Rev. 18, 1 (1989).CrossRefGoogle Scholar
25Pope, M.T., in Mixed-Valence Compounds, Heteropoly Blues, edited by Brown, D.B. (D. Reidel, Oxford, 1979), p. 365.Google Scholar
26Sanchez, C., Livage, J., Launay, J.P., Fournier, M., and Jeannin, Y., J. Am. Chem. Soc. 104, 3194 (1982).CrossRefGoogle Scholar
27Fricke, K., Jerschkavitz, H.G., and Olmann, G., J. Chem. Soc. Faraday Trans. 83, 3115 (1987).CrossRefGoogle Scholar
28Yamase, T., J. Chem. Soc. Dalton Trans. 11, 3055 (1991).CrossRefGoogle Scholar
29Pope, M.T. and Varga, G.M. Jr., Inorg. Chem. 5, 1249 (1966) and references therein.CrossRefGoogle Scholar