Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T20:59:56.648Z Has data issue: false hasContentIssue false

Fabrication of β-boron by chemical-reaction and melt-quenching methods at high pressures

Published online by Cambridge University Press:  03 March 2011

V.V. Brazhkin
Affiliation:
Institute for High Pressure Physics, Troitsk, Moscow 142190, Russia
T. Taniguichi*
Affiliation:
National Institute for Materials Sciences, Tsukuba, Ibaraki 305-0044, Japan
M. Akaishi
Affiliation:
National Institute for Materials Sciences, Tsukuba, Ibaraki 305-0044, Japan
S.V. Popova
Affiliation:
Institute for High Pressure Physics, Troitsk, Moscow 142190, Russia
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The dependence of boron crystallization upon melt cooling has been investigated, as well as boron formation as a result of the chemical reaction of boron oxide with magnesium at a pressure of 7.7 GPa. Crystallization from the melt and the chemical reaction produce a rhombohedral β-boron phase, which is evidence of this phase stability at all temperatures up to the melting curve within the pressure range up to7.7 GPa. The melting temperature Tm at 7.7 GPa is 2480 ± 50 K, which points to a slight positive slope of the melting curve equal to approximately 10 K/GPa. Well-shaped single crystals of boron are formed as a result of the chemical reaction and the subsequent cooling from the melt at a rate of approximately 1 K/s, indicating low viscosity of the liquid phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Buschbeck, K.S., Boron Compounds, Elemental Boron and Boron Carbides, Glemin Handbook of Inorganic Chemistry, Vol. 13 (Springer, Berlin, 1981).Google Scholar
2Newkirk, A.E., Elemental Boron, Boron, Metallo-Boron Compounds and Boranes (Handbook, Interscience, New York, 1964).Google Scholar
3Naslain, R., Boron and Refractory Borides, edited by Matkovich, V.I., (Springer-Verlag, New York, 1977).Google Scholar
4Feltz, A., Amorphe und Glasartige Anorganische Festkorper (Academie-Verlag, Berlin, 1983).CrossRefGoogle Scholar
5Krishnan, S., Nordine, P.C., Weber, J.K. and Schiffman, R.A.: Optical properties and melting point of pure boron. High Temp. Sci. 31, 45 (1991).Google Scholar
6Stout, N.D., Mar, R.W. and Boo, W.O.: High-temperature enthalpy and enthalpy of fusion of boron by drop calorimetry. High Temp. Sci. 5, 241 (1973).Google Scholar
7Tawadze, F.N., Bairamashvili, I.A., Tsagareishvili, G.V. and Hantadze, D.V.: Density measurements of solid and liquid boron. Stud. Cercet. Metal. 10, 49 (1965).Google Scholar
8Glorieux, B., Saboungi, M.L. and Enderby, J.E.: Electronic conduction of in liquid boron. Europhys. Lett. 56, 81 (2001).CrossRefGoogle Scholar
9Krishnan, S., Ansell, S., Felten, J.J., Volin, K.J. and Price, D.L.: Structure of liquid boron. Phys. Rev. Lett. 81, 586 (1998).CrossRefGoogle Scholar
10Sanz, D.N., Loubeyre, P. and Mezouar, M.: Equation of state and pressure induced amorphization of beta-boron from x-ray measurements up to 100 GPa. Phys. Rev. Lett. 89, 245501 (2002).CrossRefGoogle ScholarPubMed
11Eremets, M., Struzhkin, V., Mao, H.K. and Hemley, R.: Superconductivity in boron. Science 293, 272 (2001).CrossRefGoogle ScholarPubMed
12Wentorf, R.H.: Boron: Another form. Science 147, 49 (1965).CrossRefGoogle ScholarPubMed
13Ma, Y., Mao, H.K., Hemley, R.J., and Prewitt, C.T.: Abstracts of Materials Research Society, Fall Meeting (Pittsburgh, PA 1997) p. 579.Google Scholar
14Taniguchi, T., Akaishi, M. and Yamaoka, S.: Sintering of cubic boron nitride without additives at 7.7 GPa and above 2000. J. Mater. Res. 14, 162 (1999).CrossRefGoogle Scholar
15Yakovlev, E.N.: Thermodynamical conditions of diamond formation from hydrocarbon. Russian Journal of Superhard Materials 5, 14 (2001).Google Scholar
16Brazhkin, V.V., Voloshin, R.N., Lyapin, A.G. and Popova, S.V.Phase equilibria in partially opened systems under pressure: The decomposition of stoichiometric GeO2 oxide. Physics Uspekhi 173, 1283 (2003).CrossRefGoogle Scholar
17Zhao, J. and Lu, J.P.: Pressure induced metallization in solid boron. Phys. Rev. B 66, 092101 (2002).CrossRefGoogle Scholar
18Haussermann, U., Simak, S.I., Ahuja, R. and Johansson, B.: Metal-nonmetal transition in the boron group elements. Phys. Rev. Lett. 90, 065701 (2003).CrossRefGoogle ScholarPubMed
19Brazhkin, V.V., Lyapin, A.G. and Hemley, R.J.: Harder than diamond: Dreams and reality. Philos. Mag. A 82, 231 (2002).CrossRefGoogle Scholar
20Ma, Y., Prewitt, C., Zou, G., Mao, H.K. and Hemly, R.J.: High pressure-high temperature x-ray diffraction of beta-boron to 30 GPa. Phys. Rev. B 67, 174116 (2003).CrossRefGoogle Scholar