Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T00:56:35.406Z Has data issue: false hasContentIssue false

Explanation of the effects of gravity on crystallization of ZrF2–BaF2–LaF3–AlF3–NaF glass

Published online by Cambridge University Press:  31 January 2011

Dennis S. Tucker
Affiliation:
NASA/Marshall Space Flight Center, Huntsville, Alabama 35812
Edwin C. Ethridge
Affiliation:
NASA/Marshall Space Flight Center, Huntsville, Alabama 35812
Get access

Abstract

The effects of gravity on crystallization of ZrF2–BaF2–LaF3–AlF3–NaF glasses have been studied by utilizing NASA's KC135 aircraft and a sounding rocket. Fibers were heated to the crystallization temperature in unit and reduced gravity. The fibers processed in unit gravity exhibited crystallization, while fibers processed in reduced gravity showed no signs of crystallization. An explanation based on shear thinning of liquids is presented to explain these results.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Boehm, L., Chung, K.H., Crichton, S.N., and Moynihan, C.T., Infra-red Optical Materials and Fibers V (SPIE 843, Bellingham, WA, 1987).Google Scholar
2.Tran, D.C., Siegel, G.H., and Bendow, B., J. Lightwave Technol. LT–2(5), 121 (1984).Google Scholar
3.Bansal, N.P., Bruce, A.J., Doremus, R.H., and Moynihan, C.T., In-frared Optical Materials and Fibers V (SPIE 843, Bellingham, WA, 1987).Google Scholar
4.Varma, S., Prasad, S.E., Murley, I., Wheat, T.A., and Abe, K., Proc. Spacebound 91 248 (1991).Google Scholar
5.Varma, S., Prasad, S.E., Murley, I., Wheat, T.A., and Abe, K., Proc. Spacebound 92 109 (1992).Google Scholar
6.Anselm, L. and Frischat, G.H., Phys. Chem. Glasses 41, 72 (2000).Google Scholar
7.Tran, D., Infrared Fiber Systems Inc., Silver Springs, MD 20904.Google Scholar
8.Truex, T., Galileo Electro-Optical Corp., Sturbridge, MA 01566.Google Scholar
9.Kortan, A.R., Lucent Technologies, Murray Hill, NJ 07974.Google Scholar
10.Busse, L.E., Lu, G., Tran, D.C., and Siegel, G.H. Jr., Mater. Sci. Forum 5, 219 (1985).Google Scholar
11.Nakao, Y. and Moynihan, C.T., Mater. Sci. Forum 67&68, 187 (1991).Google Scholar
12.Tucker, D.S., Workman, G.L., and Smith, G.A., AIAA Proc. 95, 3784 (1995).Google Scholar
13.Tucker, D.S., Workman, G.L., Smith, G.A., and O’Brien, S., SPIE Proc. 2809, 23 (1996).Google Scholar
14.Ethridge, E.C. and Tucker, D.S., “Mechanisms for the Crystalliza-tion of ZBLAN,” proposal submitted to NASA in response to NRA-98-HEDS-05 (1999).Google Scholar
15.Pennings, A.J., vanderMark, J.M.A., and Booji, H.C., Kolloid. Z.u.Z.f. Polym. 236, 99 (1970).Google Scholar
16.Gutzow, I., Durschang, B., and Russel, C., J. Mater. Sci. 32, 5405 (1997a).Google Scholar
17.Wasche, R. and Bruckner, R., J. Non-Cryst. Solids 209, 96 (1986).Google Scholar
18.Habek, A. and Bruckner, R., J. Non-Cryst. Solids 162, 225 (1993).Google Scholar
19.Deubener, J. and Bruckner, R., J. Non-Cryst. Solids 209, 96 (1997).Google Scholar
20.Wilson, S.J. and Poole, D., Mater. Sci. Forum 6, 665 (1985).Google Scholar
21.Hasz, W.C., Crichton, S.N. and Moynihan, C.T., Mater. Sci. Forum 32–33, 589 (1988).Google Scholar
22.Turnbull, D., Phys. 10, 473 (1969).Google Scholar
23.Uhlmann, D.R., J. Non-Cryst. Solids 7, 337 (1972).CrossRefGoogle Scholar