Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T14:05:20.677Z Has data issue: false hasContentIssue false

Epitaxial growth of PbZr0.5Ti0.5O3 thin films on SrRuO3/SrTiO3 substrates using chemical solution deposition: Microstructural and ferroelectric properties

Published online by Cambridge University Press:  31 January 2011

J. H. Kim*
Affiliation:
Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Kwangju 500-757, South Korea
Youngman Kim
Affiliation:
Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Kwangju 500-757, South Korea
A. T. Chien
Affiliation:
Materials Department and Materials Research Laboratory, College of Engineering, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Department and Materials Research Laboratory, College of Engineering, University of California, Santa Barbara, California 93106
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

Epitaxial PbZr0.5Ti0.5O3 (PZT) thin films were grown on top of a SrRuO3 epitaxial electrode layer on a (100) SrTiO3 substrate by the chemical solution deposition method at various temperatures. The microstructure of the PZT thin films was investigated by x-ray diffraction and transmission electron microscopy, and the ferroelectric properties were measured using the Ag/PZT/SRO capacitor structure. In the PZT thin film annealed at low temperature (450 °C/1h), both the perovskite PZT phase at the film/substrate interface and the fluorite PZT phase in the upper region of the film were obtained. It exhibited nonferroelectric properties. The PZT thin film annealed at temperature as low as 525 °C had only a perovskite tetragonal phase and the epitaxial orientational relationship of (001)[010]PZT∥(001)[010]SRO∥(001)[010]STOwith the substrate, and shows a ferroelectric property. The remnant (Pr) and saturation polarization (Ps) density of the sample annealed at 600 °C/1h were measured to be Pr ˜ 51.4 μC/cm2 and Ps ˜ 62.1 μC/cm2 at 5 V, respectively. The net switched polarization dropped only to 98% of its initial value after 7 × 108 fatigue cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, F. and Leppavuori, S., J. Appl. Phys. 82, 1293 (1997).Google Scholar
2.De Veirman, A.E.M., Cillessen, J.F.M., De Keijser, M., Wolf, R.M., Taylor, D.L, Staals, A.A., and Dormans, G.J.M., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolfe, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 394.Google Scholar
3.Ghonge, S.G., God, E., Ramesh, R., Sands, T., and Keramidas, V.G., Appl. Phys. Lett. 63, 1628 (1993).Google Scholar
4.Tiwari, P., Zheleva, T., and Narayan, J., Appl. Phys. Lett. 63, 30 (1993).CrossRefGoogle Scholar
5.Lee, J., Johnson, L., Safari, A., Ramesh, R., Sands, T., Gilchrist, H., and Keramidas, V.G., Appl. Phys. Lett. 63, 27 (1993).Google Scholar
6.Bjormander, C., Grishin, A.M., Moon, B.M., Lee, J., and Rao, K.V., Appl. Phys. Lett. 64, 3646 (1994).Google Scholar
7.Ansari, P.H. and Safari, A., Integrated Ferroelectrics 7, 185 (1995).CrossRefGoogle Scholar
8.Foster, C.M., Bai, G-R., Csencsits, R., Vetrone, J., Jammy, R., Wills, L.A., Carr, E., and Amano, J., J. Appl. Phys. 81, 2349 (1997).Google Scholar
9.de Keijser, M., Cillessen, J.F.M., Janssen, R.B.F., de Veirman, A.E.M., and de Leeuw, D.M., J. Appl. Phys. 79, 393 (1996).CrossRefGoogle Scholar
10.Suga, M., Hiratani, M., Okazaki, C., Koguchi, M., Kakibayashi, H., Integrated Ferroelectrics 18, 389 (1997).Google Scholar
11.Eom, C.B., Van Dover, R.B., Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., and Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993).Google Scholar
12.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 65, 2717 (1988).Google Scholar
13.Hase, T. and Shiosaki, T., Jpn. J. Appl. Phys. 30, 2159 (1991).CrossRefGoogle Scholar
14.Kim, J.H., Chien, A.T., Lange, F.F., and Wills, L., J. Mater. Res. 14, 1190 (1999).Google Scholar
15.Bauer, E.G., Dodson, B.W., Ehrlich, D.J., Feldman, L.C., Flynn, C.P., Geis, M.W., Harbison, J.P., Matyi, R.J., Peercy, P.S., Petroff, P.M., Phillips, J.M., Stringfellow, G.B., and Zangwill, A., Mater. Res. 5, 852 (1990).Google Scholar
16.Nashimoto, K., Fork, D.K., and Anderson, G.B., Appl. Phys. Lett. 66, 822 (1995).Google Scholar
17.Kim, J.H. and Lange, F.F., in Ferroelectric Thin Films VI, edited by Treece, , Jones, R.E., Foster, C.M., Desu, S.B., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 493, Warrendale, PA, 1998), 323;Google Scholar
Kim, J.H. and Lange, F.F., J. Mater. Res. 14, 1626 (1999).Google Scholar
18.Seifert, A., Lange, F.F., and Speck, J., J. Mater. Res. 10, 680 (1995).Google Scholar
19.Voigt, J.A., Tuttle, B.A., Headley, T.J., and Lamppa, D.L., in Ferroelectric Thin Films IV, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 395.Google Scholar
20.Kim, J.H. and Lange, F.F., J. Mater. Res. 14, 1004 (1999).Google Scholar
21.Budd, K.D., Dey, S.K., and Payne, D.A., Britt. Cer. Proc. 36, 107 (1985).;Google Scholar
Budd, K.D., Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois (1986).Google Scholar
22.Aoki, K., Murayama, I., Fukuda, Y., and Nixhimura, A., Jpn. J. Appl. Phys. 36, L690 (1997).Google Scholar