Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T13:09:00.807Z Has data issue: false hasContentIssue false

Effects of peroxo precursors and annealing temperature on properties and photocatalytic activity of nanoscale titania

Published online by Cambridge University Press:  28 March 2018

Elena Vladimirovna Savinkina*
Affiliation:
Institute of Fine Chemical Technologies, Moscow Technological University, Moscow 119571, Russia
Lubov N. Obolenskaya
Affiliation:
Institute of Fine Chemical Technologies, Moscow Technological University, Moscow 119571, Russia
Galina M. Kuzmicheva
Affiliation:
Institute of Fine Chemical Technologies, Moscow Technological University, Moscow 119571, Russia
Ilya D. Morozov
Affiliation:
Institute of Fine Chemical Technologies, Moscow Technological University, Moscow 119571, Russia
Ratibor G. Chumakov
Affiliation:
Kurchatov Institute National Research Centre, Moscow 123182, Russia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Titania nanoparticles (anatase or anatase + rutile) with enhanced photocatalytic activity were successfully produced by treating titanyl sulfate with various peroxo compounds (hydrogen peroxide, ammonium persulfate, and urea hydrogen peroxide) with further annealing. Transformation of titanyl sulfate to titanium dioxide was investigated by X-ray diffraction, electron microscopy, X-ray microanalysis, IR, Raman, X-ray photoelectron, and UV/vis spectroscopy. The peroxo compound and annealing temperature play an important role in phase composition and properties of the samples. Correlations between phase composition, oxygen content, band gaps, and constant rates for methyl orange (MO) discoloration were found. The [TiOx(O2)2−x(H2O)m] phase, which forms on the first stage of the reaction, contains nanoparticles with small crystallites (1–2 nm) and promotes formation of titanium dioxide with the anatase structure. Thermal decomposition of the peroxo-containing phase results in formation of titanium dioxide. Oxygen excess prevents transformation of anatase to rutile, decreases band gap, and increases activity of titanium dioxide (anatase or anatase + rutile) in the model reaction of MO destruction.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hashimoto, K., Irie, H., and Fujishima, A.: TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269 (2005).Google Scholar
Tanaka, K., Capule, M.F.V., and Hisanaga, T.: Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett. 187, 73 (1991).Google Scholar
Billik, P. and Plesch, G.: Mechanochemical synthesis of anatase and rutile nanopowders from TiOSO4. Mater. Lett. 61, 1183 (2007).Google Scholar
Ismagilov, Z.R., Tsykoza, L.T., Shikina, N.V., Zarytova, V.F., Zinoviev, V.V., and Zagrebelnyi, S.N.: Synthesis and stabilization of nano-sized titanium dioxide. Russ. Chem. Rev. 78, 873 (2009).Google Scholar
Han, C., Luque, R., and Dionysiou, D.: Facile preparation of controllable size monodisperse anatase titania nanoparticles. Chem. Commun. 48, 1860 (2011).Google Scholar
Obolenskaya, L.N., Kuz’micheva, G.M., Savinkina, E.V., Sadovskaya, N.V., Zhilkina, A.V., Prokudina, N.A., and Chernyshev, V.V.: Influence of the conditions of the sulfate method on the characteristics of nanosized anatase-type samples. Russ. Chem. Bull. 61, 2049 (2012).Google Scholar
Fattakhova-Rohlfing, D., Zaleska, A., and Bein, T.: Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 114, 9487 (2014).Google Scholar
Kumar, S.G. and Rao, K.S.R.K.: Polymorphic phase transition among the titania crystal structures using a solution-based approach: From precursor chemistry to nucleation process. Nanoscale 6, 11574 (2014).Google Scholar
Cargnello, M., Gordon, T.R., and Murray, C.B.: Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem. Rev. 114, 9319 (2014).Google Scholar
Lasfargues, M., Bell, A., and Ding, Y.: In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications. J. Nanopart. Res. 18, 150 (2016).Google Scholar
Hanrahan, E.S.: The thermal decomposition of titanyl sulphate hydrates. J. Inorg. Nucl. Chem. 26, 1757 (1964).Google Scholar
Ahmed, M.A.K., Fjellvåg, H., and Kjekshus, A.: Syntheses and crystal structures of titanium oxide sulfates. Acta Chem. Scand. 50, 275 (1996).Google Scholar
Reynolds, M.L. and Wiseman, T.J.: Some observations on the structure of titanyl sulphate dihydrate. J. Inorg. Nucl. Chem. 29, 1381 (1967).Google Scholar
Johnsson, M., Pettersson, P., and Nygren, M.: Thermal decomposition of fibrous TiOSO4·2H2O to TiO2. Thermochim. Acta 298, 47 (1997).Google Scholar
Reynolds, H., Bhargava, S., and Antolasic, F.: Structural investigation of titanyl sulfate dihydrate and intermediates formed during thermal decomposition. Chemeca, Tade, M., ed. (Engineers Australia, Perth, Australia, 2009); pp. 110.Google Scholar
Hanaor, D.A.H. and Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011).CrossRefGoogle Scholar
Strauss, M., Maroneze, C.M., de Souza e Silva, J.M., Sigoli, F.A., Gushikem, Y., and Mazali, I.O.: Annealing temperature effects on sol–gel nanostructured mesoporous TiO2/SiO2 and its photocatalytic activity. Mater. Chem. Phys. 126, 188 (2011).Google Scholar
Ge, L., Xu, M., E, L., Tian, Y., and Fang, H.: Preparation of TiO2 thin films using inorganic peroxo titanic complex and autoclaved sols as precursors. Key Eng. Mater. 280–283, 809 (2005).Google Scholar
Kim, H.W., Ryu, J.H., Moon, J., and Kim, D.H.: Effect of ultrasonic treatment and temperature on nanocrystalline TiO2. J. Power Sources 163, 196 (2006).Google Scholar
Ge, L. and Xu, M.: Fabrication and characterization of TiO2 photocatalytic thin film prepared from peroxo titanic acid sol. J. Sol-Gel Sci. Technol. 43, 1 (2007).Google Scholar
Chang, J.A., Vithal, M., Baek, I.C., and Seok, S.I.: Morphological and phase evolution of TiO2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid. J. Solid State Chem. 182, 749 (2009).Google Scholar
Bandgar, A., Sabale, S., and Pawar, S.H.: Studies on influence of reflux time on synthesis of nanocrystalline TiO2 prepared by peroxotitanate complex solutions. Ceram. Int. 38, 1905 (2012).Google Scholar
Štengl, V., Henych, J., Szatmáry, L., and Kormunda, M.: Photocatalytic oxidation of butane by titania after reductive annealing. J. Mater. Sci. 49, 4161 (2014).Google Scholar
Francatto, P., Souza Neto, F.N., Nogueira, A.E., Kubo, A.M., Ribeiro, L.S., Gonçalves, L.P., Gorup, L.F., Leite, E.R., and Camargo, E.R.: Enhanced reactivity of peroxo-modified surface of titanium dioxide nanoparticles used to synthesize ultrafine bismuth titanate powders at lower temperatures. Ceram. Int. 42, 15767 (2016).Google Scholar
Lee, K-Y., Sato, K., and Mohamed, A.R.: Facile synthesis of anatase-rutile TiO2 composites with enhanced CO2 photoreduction activity and the effect of Pt loading on product selectivity. Mater. Lett. 163, 240 (2016).Google Scholar
Štengl, V., Grygar, T.M., Henych, J., and Kormunda, M.: Hydrogen peroxide route to Sn-doped titania photocatalysts. Chem. Cent. J. 6, 113 (2012).Google Scholar
Etacheri, V., Seery, M.K., Hinder, S.J., and Pillai, S.C.: Oxygen rich titania: A dopant free, high temperature stable, and visible-light active anatase photocatalyst. Adv. Funct. Mater. 21, 3744 (2011).Google Scholar
Savinkina, E., Obolenskaya, L., and Kuzmicheva, G.: Efficiency of sensitizing nano-titania with organic dyes and peroxo complexes. Appl. Nanosci. 5, 125 (2015).Google Scholar
Savinkina, E.V., Obolenskaya, L.N., Kuzmicheva, G.M., Kabachkov, E.N., Gainanova, A.A., Zubavichus, Y.V., Murzin, V.Y., and Sadovskaya, N.V.: Introduction of peroxo groups into titania: Preparation, characterization and properties of the new peroxo-containing phase. CrystEngComm 17, 7113 (2015).Google Scholar
Ma, X., Guo, D., Jiang, Q., Ma, Z., Ma, Zh., Ye, W., and Li, C.: Preparation and characterization of SO42−/TiO2 and S2O82−/TiO2 catalysts. Front. Chem. Eng. China 1, 45 (2007).Google Scholar
Watanabe, N., Kaneko, T., Uchimaru, Y., Yanagida, S., Yasumori, A., and Sugahara, Y.: Preparation of water-dispersible TiO2 nanoparticles from titanium tetrachloride using urea hydrogen peroxide as an oxygen donor. CrystEngComm 15, 10533 (2013).Google Scholar
Abu Bakar, S. and Ribeiro, C.: Low temperature synthesis of N-doped TiO2 with rice-like morphology through peroxo assisted hydrothermal route: Materials characterization and photocatalytic properties. Appl. Surf. Sci. 377, 121 (2016).CrossRefGoogle Scholar
Obolenskaya, L.N., Gaynanova, A.A., Kravchenko, G.V., Kuz’micheva, G.M., Savinkina, E.V., Domoroshchina, E.N., Tsybinsky, A.M., and Podbelsky, A.V.: Nanocomposites based on silicon dioxide of different nature with functional titanium dioxide nanoparticles. Nanotechnol. Russ. 11, 41 (2016).Google Scholar
López, R. and Gómez, R.: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 61, 1 (2012).Google Scholar
Brown, G.T. and Darwent, J.R.: Photoreduction of methyl orange sensitized by colloidal titanium dioxide. J. Chem. Soc., Faraday Trans. 1 80, 1631 (1984).Google Scholar
Periyat, P., Naufal, B., and Ullattil, S.G.: A review on high temperature stable anatase TiO2 photocatalysts. Mater. Sci. Forum 855, 78 (2016).Google Scholar
Obolenskaya, L.N., Savinkina, E.V., Kuzmicheva, G.M., and Istomin, A.B.: Formation of nano-titania by thermal decomposition of titanyl sulfate in the presence of (NH4)2SO4, (NH4)2S2O6(O2), and (NH2)2CO·H2O2. In XX Mendeleev Congress on General and Applied Chemistry, 26–30 September, Ekaterinburg, 2016: Abstract Book, Vol. 2b; Chemistry and Technology of Materials and Nanomaterials (Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2016); p. 23.Google Scholar
Vasilyeva, I., Kuz’micheva, G., Pochtar, A., Gainanova, A., Timaeva, O., Dorokhov, A., and Podbel’skiy, V.: On the nature of the phase “η-TiO2. New J. Chem. 40, 151 (2016).Google Scholar
Ono, Y. and Hattori, H.: Solid Base Catalysis (Springer Science & Business Media, Tokyo, 2012); p. 113.Google Scholar
Tarasov, A., Trusov, G., Minnekhanov, A., Gil, D., Konstantinova, E., Goodilin, E., and Dobrovolsky, Y.: Facile preparation of nitrogen-doped nanostructured titania microspheres by a new method of thermally assisted reactions in aqueous sprays. J. Mater. Chem. A 2, 3102 (2014).Google Scholar
Wang, G., Xu, L., Zhang, J., Yin, T., and Han, D.: Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment. Int. J. Photoenergy 2012, 265760 (2012).CrossRefGoogle Scholar
Madhusudan Reddy, K., Manorama, S.V., and Ramachandra Reddy, A.: Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239 (2002).Google Scholar
Tan, L.L., Ong, W.J., Chai, S.P., and Mohamed, A.R.: Band gap engineered, oxygen-rich TiO2 for visible light induced photocatalytic reduction of CO2. Chem. Commun. 50, 6923 (2014).Google Scholar
Shannon, R.D. and Pask, J.A.: Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965).Google Scholar
Supplementary material: File

Savinkina et al. supplementary material

Savinkina et al. supplementary material 1

Download Savinkina et al. supplementary material(File)
File 1.4 MB