Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T04:43:27.775Z Has data issue: false hasContentIssue false

Effect of mechanical alloying on combustion synthesis of MoSi2

Published online by Cambridge University Press:  31 January 2011

Hyung-Sang Park
Affiliation:
Division of Materials Science and Engineering, Seoul National University, Seoul 151–742, Korea
Kwang-Seon Shin
Affiliation:
Division of Materials Science and Engineering, Seoul National University, Seoul 151–742, Korea
Yong-Seog Kim
Affiliation:
Department of Metallurgy and Materials Science, Hong Ik University, Seoul 121–791, Korea
Get access

Abstract

Characteristics of the combustion synthesis of MoSi2 using elemental Mo and Si powder mixtures prepared by mechanical alloying were investigated. The mechanical alloying resulted in powders of pseudolamellar structure and a partial conversion of the elemental powders to hexagonal MoSi2 phase. Combustion reaction of the mixture was ignited around 670 °C, which is much lower than that with the powder prepared by low-energy ball milling. A mathematical model was developed to demonstrate the possibility of the ignition of the combustion reaction of the lamellar structure via a solid-state diffusional process. On the basis of model, effects of mechanical alloying time on the ignition temperature and combustion temperature are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maxwell, W.A., Nat. Advis. Comm. Aeronaut. Rep. E52B06 (1952).Google Scholar
2.Schlichting, J., High Temp. High Press. 10, 241 (1978).Google Scholar
3.Gac, F.D. and Petrovic, J.J., J. Am. Ceram. Soc., 68, C200 (1985).CrossRefGoogle Scholar
4.Xiao, L., Kim, Y.S., Abbaschian, R., and Hecht, R.J., Mater. Sci. Eng. A 144, 277 (1991).CrossRefGoogle Scholar
5.Vasud van, A.K. and Petrovic, J.J., Mater. Sci. Eng. A 155, 1 (1992).CrossRefGoogle Scholar
6.Cotton, J.D., Kim, Y.S., and Kaufman, M.J., Mater. Sci. Eng. A 144, 287 (1991).CrossRefGoogle Scholar
7.Schwarz, R.B., Srinivasan, S.R., Petrovic, J.J., and Maggiore, C.J., Mater. Sci. Eng. A 155, 75 (1992).CrossRefGoogle Scholar
8.Park, H.S. and Shin, K.S., Korean, J.Inst. Met. Mater. 33, 750 (1995).Google Scholar
9.Liu, L., Padella, F., Guo, W., and Magini, M., Acta Metall. Mater. 43, 3755 (1995).CrossRefGoogle Scholar
10.Patankar, S.N., Xiao, S-Q., Lewandowski, J.J., and Heuer, A.H., J. Mater. Res. 8, 1311 (1993).CrossRefGoogle Scholar
11.Ma, E., Pagn, J., Cranford, G., and Atzmon, M., J. Mater. Res. 8, 1836 (1993).CrossRefGoogle Scholar
12.Hardwick, D.A., Martin, P.L., and Moores, R.J., Scr. Metall. 27, 391 (1992).CrossRefGoogle Scholar
13.Alman, D.E. and Doan, C.P., Scr. Metall. Mater. 31, 273 (1994).CrossRefGoogle Scholar
14.Ka, M.D., Lee, G.W., Jang, Y.S., Kim, Y.D., and Kim, Y.S., J. Korean Inst. Met. Mater. 33, 1091 (1995).Google Scholar
15.Deevi, S.C., J. Mater. Sci. 26, 3343 (1991).CrossRefGoogle Scholar
16.Jo, S.W., Lee, G.W., Moon, J.T., and Kim, Y.S., Acta Mater. 44, 4317 (1996).CrossRefGoogle Scholar
17.Barin, I., Thermochemical Data of Pure Substances (VCH Verlagsgesellshaft mbH, D-6940 Weinheim, Federal Republic of Germany, 1989).Google Scholar
18.Gras, C., Vrel, D., Gaffer, E., and Bernard, F., J. Alloys Comp. 314, 240 (2001).CrossRefGoogle Scholar
19.Takacs, L., Soika, V., and Balaz, P., Solid State Ionics 141–142, 641 (2001).CrossRefGoogle Scholar
20.Chae, S.W., Son, C.H., and Kim, Y.S., Mater. Sci. Eng. A 279, 111 (2000).CrossRefGoogle Scholar
21.Atzmon, M., Metall. Trans. 23A, 49 (1992).CrossRefGoogle Scholar
22.The Encyclopedia of Advanced Materials, edited by Bloor, David and Cahn, R.W. (Pergamon, New York, 1994) Vol. 4, p. 2490.Google Scholar
23.Cheng, J.Y., Cheng, H.C., and Chen, L.J., J. Appl. Phys. 61, 2218 (1987).CrossRefGoogle Scholar