Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:41:02.941Z Has data issue: false hasContentIssue false

Deformation mechanisms in nacre

Published online by Cambridge University Press:  31 January 2011

R. Z. Wang
Affiliation:
Department of Chemical Engineering and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
Z. Suo
Affiliation:
Department of Mechanical and Aerospace Engineering and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
A. G. Evans
Affiliation:
Department of Mechanical and Aerospace Engineering and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
N. Yao
Affiliation:
Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
I. A. Aksay
Affiliation:
Department of Chemical Engineering and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

Nacre (mother-of-pearl) from mollusc shells is a biologically formed lamellar ceramic. The inelastic deformation of this material has been experimentally examined, with a focus on understanding the underlying mechanisms. Slip along the lamellae tablet interface has been ascertained by testing in compression with the boundaries oriented at 45° to the loading axis. The steady-state shear resistance τss has been determined and inelastic strain shown to be as high as 8%. The inelastic deformation was realized by massive interlamellae shearing. Testing in tension parallel to the tablets indicates inelastic strain of about 1%, occurring at a steady-state stress, σsss ≈ 110 MPa. The strain was associated with the formation of multiple dilatation bands at the intertablet boundaries accompanied by interlamellae sliding. Nano-asperities on the aragonite tablets and their interposing topology provide the resistance to interfacial sliding and establish the level of the stress needed to attain the inelastic strain. Detailed mechanisms and their significance for the design of robust ceramics are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Weiner, S. and Wagner, H.D., Annu. Rev. Mater. Sci. 28, 271 (1998).CrossRefGoogle Scholar
2Weiner, S. and Addadi, L., J. Mater. Chem. 7, 689 (1997).CrossRefGoogle Scholar
3The Mechanical Properties of Biological Materials, edited by Currey, J.D. and Vincent, J.F.V. (Cambridge University Press, Cambridge, United Kingdom, 1980).Google Scholar
4Jackson, A.P., Vincent, J.F.V., and Turner, R.M., Proc. R. Soc. London, Ser. B 234, 415 (1988).Google Scholar
5Currey, J.D., Proc. R. Soc. London, Ser. B 196, 443 (1977).Google Scholar
6Currey, J.D., J. Zool. London 180, 445 (1976).Google Scholar
7Evans, A.G., Wang, R.Z., Suo, Z., Aksay, I.A., He, M.Y., and Hutchinson, J.W., J. Mater. Res. (2001, in press).Google Scholar
8Evans, A.G. and Zok, F.W., Solid State Phys. 47, 177 (1994).CrossRefGoogle Scholar
9Evans, A.G., Acta Mater. 45, 23 (1997).CrossRefGoogle Scholar
10Jackson, A.P., Vincent, J.F.V., and Turner, R.M., J. Mater. Sci. 25, 3173 (1990).CrossRefGoogle Scholar
11Liu, J., Sarikaya, M., and Aksay, I.A., in Hierarchically Structured Materials, edited by Aksay, E.B.I.A., Sarikaya, M., and Tirrell, D.A. (Materials Research Society, Pittsburgh, PA, 1992), pp. 917.Google Scholar
12Gunnison, K.E., Sarikaya, M., Liu, J., and Aksay, I.A., Hierarchically Structured Materials, edited by Aksay, E.B.I.A., Sarikaya, M., and Tirrell, D.A. (Materials Research Society, Pittsburgh, PA, 1992), pp. 171183.Google Scholar
13Sarikaya, M., Gunnison, K.E., Yasrebi, M., and Aksay, I.A., in Materials Synthesis Utilizing Biological Processes, edited by Rieke, P.D.C.P.C. and Alper, M. (Materials Research Society, Pittsburgh, PA, 1990), pp. 109116.Google Scholar
14Wang, R.Z., Wen, H.B., Cui, F.Z., Zhang, H.B., and Li, H.D., J. Mater. Sci. 30, 2299 (1995).CrossRefGoogle Scholar
15Smith, B.L., Schaffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., and Hansma, P.K., Nature 399, 761 (1999).Google Scholar
16Clegg, W.J., Acta Metall. Mater. 40, 3085 (1992).CrossRefGoogle Scholar
17Clegg, W.J., Kendall, K., McN. Alford, N., Button, T.W., and Birchall, J.D., Nature 347, 455 (1990).Google Scholar
18Jackson, A.P., Vincent, J.F.V., and Turner, R.M., Composites Sci. Technol. 36, 255 (1989).CrossRefGoogle Scholar
19Yasrebi, M., Kim, G.H., Gunnison, K.E., Milius, D.L., Sarikayan, M., and Aksay, I.A., in Better Ceramics through Chemistry IV, edited by Zelinski, B.J.J., Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), pp. 625635.Google Scholar
20Almqvist, N., Thompson, N.H., Smith, B.L., Stucky, G.D., Morse, D.E., and Hansma, P.K., Mater. Sci. Eng., C 7, 37 (1999).CrossRefGoogle Scholar
21Sellinger, A., Weiss, P.M., Nguyen, A., Lu, Y., Assink, R.A., Gong, W., and Brinker, C.J., Nature 394, 256 (1998).CrossRefGoogle Scholar
22Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheeler, A.P., Veis, A., and Caplan, A.I., Science 255, 1098 (1992).CrossRefGoogle Scholar
23Aksay, I.A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P.M., and Gruner, S.M., Science 273, 892 (1996).CrossRefGoogle Scholar
24Currey, J.D. and Taylor, J.D., J. Zool. London 173, 395 (1974).CrossRefGoogle Scholar
25Wise, S.W., Eclogae Geol. Helv. 63, 775 (1970).Google Scholar
26Suo, Z. (unpublished research).Google Scholar
27Sugimura, Y., Meyer, J., He, M.Y., Bart-Smith, H., Grenstedt, J., and Evans, A.G., Acta Metall. 45, 5245 (1997).Google Scholar
28McMeeking, R.M. and Evans, A.G., J. Am. Ceram. Soc. 65, 242 (1982).CrossRefGoogle Scholar
29Reyes-Morel, P.E. and Chen, I-W., J. Am. Ceram. Soc. 71, 343 (1988).CrossRefGoogle Scholar
30Yu, C-S., Shetty, D.K., Shaw, M.C., and Marshall, D.B., J. Am. Ceram. Soc. 75, 2991 (1992).CrossRefGoogle Scholar
31Davis, J.B., Marshall, D.B., and Morgan, P.E.D., J. Eur. Ceram. Soc. 20, 583 (2000).CrossRefGoogle Scholar
32Levi, C.G., Yang, J.Y., Dalgleish, B.J., Zok, F.W., and Evans, A.G., J. Am. Ceram. Soc. 81, 2077 (1998).CrossRefGoogle Scholar
33McNulty, J.C., Zok, F.W., Genin, G.M., and Evans, A.G., J. Am. Ceram. Soc. 82, 1217 (1999).Google Scholar